根据pandas

时间:2016-09-06 18:39:36

标签: python pandas dataframe calculated-columns

说我有this question的相同数据框:

    A0      A1      A2      B0      B1      B2      C0      C1
0   0.84    0.47    0.55    0.46    0.76    0.42    0.24    0.75
1   0.43    0.47    0.93    0.39    0.58    0.83    0.35    0.39
2   0.12    0.17    0.35    0.00    0.19    0.22    0.93    0.73
3   0.95    0.56    0.84    0.74    0.52    0.51    0.28    0.03
4   0.73    0.19    0.88    0.51    0.73    0.69    0.74    0.61
5   0.18    0.46    0.62    0.84    0.68    0.17    0.02    0.53
6   0.38    0.55    0.80    0.87    0.01    0.88    0.56    0.72

但不是想要返回每行的最小值(仅限B0,B1,B2)

    A0      A1      A2      B0      B1      B2      C0      C1      Minimum
0   0.84    0.47    0.55    0.46    0.76    0.42    0.24    0.75    0.42
1   0.43    0.47    0.93    0.39    0.58    0.83    0.35    0.39    0.39
2   0.12    0.17    0.35    0.00    0.19    0.22    0.93    0.73    0.00
3   0.95    0.56    0.84    0.74    0.52    0.51    0.28    0.03    0.51
4   0.73    0.19    0.88    0.51    0.73    0.69    0.74    0.61    0.51
5   0.18    0.46    0.62    0.84    0.68    0.17    0.02    0.53    0.17
6   0.38    0.55    0.80    0.87    0.01    0.88    0.56    0.72    0.01

我想返回列名,其中包含每行的最小值(仅限B0,B1,B2):

    A0      A1      A2      B0      B1      B2      C0      C1      col_of_min
0   0.84    0.47    0.55    0.46    0.76    0.42    0.24    0.75    B2
1   0.43    0.47    0.93    0.39    0.58    0.83    0.35    0.39    B0
2   0.12    0.17    0.35    0.00    0.19    0.22    0.93    0.73    B0
3   0.95    0.56    0.84    0.74    0.52    0.51    0.28    0.03    B2
4   0.73    0.19    0.88    0.51    0.73    0.69    0.74    0.61    B0
5   0.18    0.46    0.62    0.84    0.68    0.17    0.02    0.53    B2
6   0.38    0.55    0.80    0.87    0.01    0.88    0.56    0.72    B1

最好的方法是什么?

1 个答案:

答案 0 :(得分:5)

您可以将filter()idxmin()方法结合使用:

In [40]: x
Out[40]:
     A0    A1    A2    B0    B1    B2    C0    C1
0  0.84  0.47  0.55  0.46  0.76  0.42  0.24  0.75
1  0.43  0.47  0.93  0.39  0.58  0.83  0.35  0.39
2  0.12  0.17  0.35  0.00  0.19  0.22  0.93  0.73
3  0.95  0.56  0.84  0.74  0.52  0.51  0.28  0.03
4  0.73  0.19  0.88  0.51  0.73  0.69  0.74  0.61
5  0.18  0.46  0.62  0.84  0.68  0.17  0.02  0.53
6  0.38  0.55  0.80  0.87  0.01  0.88  0.56  0.72

In [41]: x['col_of_min'] = x.filter(like='B').idxmin(axis=1)

In [42]: x
Out[42]:
     A0    A1    A2    B0    B1    B2    C0    C1 col_of_min
0  0.84  0.47  0.55  0.46  0.76  0.42  0.24  0.75         B2
1  0.43  0.47  0.93  0.39  0.58  0.83  0.35  0.39         B0
2  0.12  0.17  0.35  0.00  0.19  0.22  0.93  0.73         B0
3  0.95  0.56  0.84  0.74  0.52  0.51  0.28  0.03         B2
4  0.73  0.19  0.88  0.51  0.73  0.69  0.74  0.61         B0
5  0.18  0.46  0.62  0.84  0.68  0.17  0.02  0.53         B2
6  0.38  0.55  0.80  0.87  0.01  0.88  0.56  0.72         B1