我应该首先说明我是Haskell和管道库的初学者,我想了解导致test
函数中该程序的高内存使用率的原因。
特别是在r1
中产生test
值的折叠中,我看到MyRecord值的累积,直到产生最终结果,除非使用deepseq
。在我的~500000行/ ~230 MB的样本数据集中,内存使用量增长超过1.5 GB。
产生r2
值的折叠在常量内存中运行。
我想了解的是:
1)在第一次折叠中可能导致MyMemory值构建的原因是什么,以及为什么使用deepseq
会修复它?我非常随意地向它扔东西,直到使用deepseq
来实现常量内存使用,但想了解它的工作原理。是否可以在不使用deepseq
的情况下实现常量内存使用,同时仍然生成相同的结果类型Maybe Int?
2)。第二次折叠有什么不同,导致它不会出现同样的问题?
我知道如果我只使用整数而不是元组,我可以使用Pipes.Prelude中的内置sum
函数,但我最终会想要处理包含任何解析错误的第二个元素。 / p>
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ScopedTypeVariables #-}
module Test where
import Control.Arrow
import Control.DeepSeq
import Control.Monad
import Data.Aeson
import Data.Function
import Data.Maybe
import Data.Monoid
import Data.Text (Text)
import Pipes
import qualified Pipes.Aeson as PA (DecodingError(..))
import qualified Pipes.Aeson.Unchecked as PA
import qualified Pipes.ByteString as PB
import qualified Pipes.Group as PG
import qualified Pipes.Parse as PP
import qualified Pipes.Prelude as P
import System.IO
import Control.Lens
import qualified Control.Foldl as Fold
data MyRecord = MyRecord
{ myRecordField1 :: !Text
, myRecordField2 :: !Int
, myRecordField3 :: !Text
, myRecordField4 :: !Text
, myRecordField5 :: !Text
, myRecordField6 :: !Text
, myRecordField7 :: !Text
, myRecordField8 :: !Text
, myRecordField9 :: !Text
, myRecordField10 :: !Int
, myRecordField11 :: !Text
, myRecordField12 :: !Text
, myRecordField13 :: !Text
} deriving (Eq, Show)
instance FromJSON MyRecord where
parseJSON (Object o) =
MyRecord <$> o .: "field1" <*> o .: "field2" <*> o .: "field3" <*>
o .: "field4" <*>
o .: "field5" <*>
o .: "filed6" <*>
o .: "field7" <*>
o .: "field8" <*>
o .: "field9" <*>
(read <$> o .: "field10") <*>
o .: "field11" <*>
o .: "field12" <*>
o .: "field13"
parseJSON x = fail $ "MyRecord: expected Object, got: " <> show x
instance ToJSON MyRecord where
toJSON _ = undefined
test :: IO ()
test = do
withFile "some-file" ReadMode $ \hIn
{-
the pipeline is composed as follows:
1 a producer reading a file with Pipes.ByteString, splitting chunks into lines,
and parsing the lines as JSON to produce tuples of (Maybe MyRecord, Maybe
ByteString), the second element being an error if parsing failed
2 a pipe filtering that tuple on a field of Maybe MyRecord, passing matching
(Maybe MyRecord, Maybe ByteString) downstream
3 and a pipe that picks an Int field out of Maybe MyRecord, passing (Maybe Int,
Maybe ByteString downstream)
pipeline == 1 >-> 2 >-> 3
memory profiling indicates the memory build up is due to accumulation of
MyRecord "objects", and data types comprising their fields (mainly
Text/ARR_WORDS)
-}
-> do
let pipeline = f1 hIn >-> f2 >-> f3
-- need to use deepseq to avoid leaking memory
r1 <-
P.fold
(\acc (v, _) -> (+) <$> acc `deepseq` acc <*> pure (fromMaybe 0 v))
(Just 0)
id
(pipeline :: Producer (Maybe Int, Maybe PB.ByteString) IO ())
print r1
hSeek hIn AbsoluteSeek 0
-- this works just fine as is and streams in constant memory
r2 <-
P.fold
(\acc v ->
case fst v of
Just x -> acc + x
Nothing -> acc)
0
id
(pipeline :: Producer (Maybe Int, Maybe PB.ByteString) IO ())
print r2
return ()
return ()
f1
:: (FromJSON a, MonadIO m)
=> Handle -> Producer (Maybe a, Maybe PB.ByteString) m ()
f1 hIn = PB.fromHandle hIn & asLines & resumingParser PA.decode
f2
:: Pipe (Maybe MyRecord, Maybe PB.ByteString) (Maybe MyRecord, Maybe PB.ByteString) IO r
f2 = filterRecords (("some value" ==) . myRecordField5)
f3 :: Pipe (Maybe MyRecord, d) (Maybe Int, d) IO r
f3 = P.map (first (fmap myRecordField10))
filterRecords
:: Monad m
=> (MyRecord -> Bool)
-> Pipe (Maybe MyRecord, Maybe PB.ByteString) (Maybe MyRecord, Maybe PB.ByteString) m r
filterRecords predicate =
for cat $ \(l, e) ->
when (isNothing l || (predicate <$> l) == Just True) $ yield (l, e)
asLines
:: Monad m
=> Producer PB.ByteString m x -> Producer PB.ByteString m x
asLines p = Fold.purely PG.folds Fold.mconcat (view PB.lines p)
parseRecords
:: (Monad m, FromJSON a, ToJSON a)
=> Producer PB.ByteString m r
-> Producer a m (Either (PA.DecodingError, Producer PB.ByteString m r) r)
parseRecords = view PA.decoded
resumingParser
:: Monad m
=> PP.StateT (Producer a m r) m (Maybe (Either e b))
-> Producer a m r
-> Producer (Maybe b, Maybe a) m ()
resumingParser parser p = do
(x, p') <- lift $ PP.runStateT parser p
case x of
Nothing -> return ()
Just (Left _) -> do
(x', p'') <- lift $ PP.runStateT PP.draw p'
yield (Nothing, x')
resumingParser parser p''
Just (Right b) -> do
yield (Just b, Nothing)
resumingParser parser p'
答案 0 :(得分:3)
正如中所提到的,折叠是严格的。然而,
严格性是docs for Pipes.foldl
,只会迫使评估
到WHNF - 弱头正常形式。 WHNF足以完全评估一个简单的
类似于Int,但它不足以完全评估更多
复杂类型,如DataPolicy
。
一些例子:
Maybe Int
在第一种情况下,变量main1 = do
let a = 3 + undefined
b = seq a 10
print b -- error: Exception: Prelude.undefined
main2 = do
let a = Just (3 + undefined)
b = seq a 10
print b -- no exception
是大thunk的acc
- 所有元素的总和。在每次迭代中变量Just
从acc
到Just a
到Just (a+b)
等。添加
在折叠期间没有进行 - 它只是在完成
最后。大量内存使用来自存储这种不断增长的总和
在记忆中。
在第二种情况下,求和每次迭代减少Just (a+b+c)
到一个简单的Int。
除了使用$!
之外,您还可以使用deepseq
:
force
和implemented with $!
,与ViewPatterns结合使用
可以创建一个完全评估函数参数的模式:
force x = x `deepseq` x