我有一系列决策文件,其形式类似于:
{
_id: ObjectId("23de23802fe925b6ef7162a4"),
userId: 6de4,
decision: true,
datetime:ISODate("2016-07-27T08:22:47.169Z")
},
{
_id: ObjectId("507f1f77bcf86cd799439011"),
userId: 23f4,
decision: true,
datetime:ISODate("2016-02-03T11:48:50.456Z")
},
.
.
.
我正在努力想出一种将这些文档分组为连续日期时间组的方法。即如果文档小于(比如组中至少一个其他文档的5分钟),则该文档应属于特定组。
目的是实现在“会话”中做出的决策群。然后可以使用聚合(例如每个决策的平均时间等)对这些“会话”组进行进一步的见解。
如果不能使用MongoDb的聚合框架,可以使用map-reduce或其他方法完成。我愿意接受建议。
描述问题的另一种方法是将以下算法应用于文档集合。
这将使集合具有所需的“会话”分组。当然,这只是描绘问题的一种方式。我不知道有什么方法可以遍历有序集合,同时使用MongoDb以这种方式进行分组。
可以这样做吗?有没有其他方法可以使用MongoDb获得相同的结果?
答案 0 :(得分:1)
根据您描述的算法,每个文档的分组逻辑总是依赖于另一个文档。我没有看到使用map reduce,聚合或单个MongoDB查询的方法。我看到的唯一解决方案是严格遵循您的算法,即读取每个文档并做出决定,如果它属于当前组或是否应该是新的。
不建议将所有文档加载到内存中,因为它可能是一个非常大的集合。所以我用一个流来按文档加载文档。
创建一个游标,查找所有文档并按日期排序,然后使用cursor.on('data', function(document){ ... });
分别阅读每个文档。
var groups = {} // init group object
var currentGroupKey;
var groupInterval = 5 * 60 * 1000; // Five minutes in milliseconds
var cursor = db.collection("documents").find({}).sort({date: 1});
cursor.on('data', function(doc) {
var timestamp = doc.date.getTime();
if (currentGroupKey != null && currentGroupKey + groupInterval >= timestamp) {
// add it to current group
groups[currentGroupKey].push(doc);
} else {
// create a new group
groups[timestamp] = [doc];
currentGroupKey = timestamp;
}
});
cursor.once('end', function() {
// This is called after last document is read
console.log(groups); // print your grouped documents
db.close();
});
对于这个文件
[ { _id: 57f59acb8e73d9634ac8c7b0,
index: 3,
date: Wed Oct 05 2016 21:02:29 GMT-0300 (BRT) },
{ _id: 57f59acb8e73d9634ac8c7ae,
index: 1,
date: Wed Oct 05 2016 21:04:02 GMT-0300 (BRT) },
{ _id: 57f59acb8e73d9634ac8c7b3,
index: 6,
date: Wed Oct 05 2016 21:07:43 GMT-0300 (BRT) },
{ _id: 57f59acb8e73d9634ac8c7b4,
index: 7,
date: Wed Oct 05 2016 21:10:26 GMT-0300 (BRT) },
{ _id: 57f59acb8e73d9634ac8c7b2,
index: 5,
date: Wed Oct 05 2016 21:14:23 GMT-0300 (BRT) },
{ _id: 57f59acb8e73d9634ac8c7b5,
index: 8,
date: Wed Oct 05 2016 21:17:39 GMT-0300 (BRT) },
{ _id: 57f59acb8e73d9634ac8c7b6,
index: 9,
date: Wed Oct 05 2016 21:21:07 GMT-0300 (BRT) },
{ _id: 57f59acb8e73d9634ac8c7ad,
index: 0,
date: Wed Oct 05 2016 21:24:19 GMT-0300 (BRT) },
{ _id: 57f59acb8e73d9634ac8c7af,
index: 2,
date: Wed Oct 05 2016 21:25:50 GMT-0300 (BRT) },
{ _id: 57f59acb8e73d9634ac8c7b1,
index: 4,
date: Wed Oct 05 2016 21:28:13 GMT-0300 (BRT) } ]
最后一组对象是
{ '1475712149573':
[ { _id: 57f59acb8e73d9634ac8c7b0,
index: 3,
date: Wed Oct 05 2016 21:02:29 GMT-0300 (BRT) },
{ _id: 57f59acb8e73d9634ac8c7ae,
index: 1,
date: Wed Oct 05 2016 21:04:02 GMT-0300 (BRT) } ],
'1475712463238':
[ { _id: 57f59acb8e73d9634ac8c7b3,
index: 6,
date: Wed Oct 05 2016 21:07:43 GMT-0300 (BRT) },
{ _id: 57f59acb8e73d9634ac8c7b4,
index: 7,
date: Wed Oct 05 2016 21:10:26 GMT-0300 (BRT) } ],
'1475712863890':
[ { _id: 57f59acb8e73d9634ac8c7b2,
index: 5,
date: Wed Oct 05 2016 21:14:23 GMT-0300 (BRT) },
{ _id: 57f59acb8e73d9634ac8c7b5,
index: 8,
date: Wed Oct 05 2016 21:17:39 GMT-0300 (BRT) } ],
'1475713267412':
[ { _id: 57f59acb8e73d9634ac8c7b6,
index: 9,
date: Wed Oct 05 2016 21:21:07 GMT-0300 (BRT) },
{ _id: 57f59acb8e73d9634ac8c7ad,
index: 0,
date: Wed Oct 05 2016 21:24:19 GMT-0300 (BRT) },
{ _id: 57f59acb8e73d9634ac8c7af,
index: 2,
date: Wed Oct 05 2016 21:25:50 GMT-0300 (BRT) } ],
'1475713693672':
[ { _id: 57f59acb8e73d9634ac8c7b1,
index: 4,
date: Wed Oct 05 2016 21:28:13 GMT-0300 (BRT) } ] }
修改强>
由于分组逻辑始终是最后读取的文档,因此我修改了算法以使其适合。现在它还使用组密钥更新每个文档,因此它不会将所有文档加载到内存中。
var lastDocumentTimestamp;
var groupIndex = 0;
var groupInterval = 5 * 60 * 1000; // Five minutes in milliseconds
var cursor = db.collection("documents").find({}).sort({date: 1});
cursor.on('data', function(doc) {
var timestamp = doc.date.getTime();
if (lastDocumentTimestamp + groupInterval < timestamp) {
groupIndex++;
}
lastDocumentTimestamp = timestamp;
db.collection("documents").update({ _id: doc._id}, { $set: {group: groupIndex}});
});
cursor.once('end', function() {
// This is called after last document is read
db.close();
});
之后,您可以使用聚合按组分组文档
db.collection("documents").aggregate([{
$group: {
_id: "$group",
count: { $sum: 1 },
docs: { $push: "$date" }
}
}])
这会产生如下结果:
[ { _id: 0,
count: 1,
docs: [ Thu Oct 06 2016 22:00:20 GMT-0300 (BRT) ] },
{ _id: 1,
count: 4,
docs:
[ Thu Oct 06 2016 22:20:31 GMT-0300 (BRT),
Thu Oct 06 2016 22:22:52 GMT-0300 (BRT),
Thu Oct 06 2016 22:25:34 GMT-0300 (BRT),
Thu Oct 06 2016 22:27:15 GMT-0300 (BRT) ] },
{ _id: 2,
count: 5,
docs:
[ Thu Oct 06 2016 22:33:27 GMT-0300 (BRT),
Thu Oct 06 2016 22:35:45 GMT-0300 (BRT),
Thu Oct 06 2016 22:38:45 GMT-0300 (BRT),
Thu Oct 06 2016 22:40:02 GMT-0300 (BRT),
Thu Oct 06 2016 22:44:20 GMT-0300 (BRT) ] } ]