Here描述了在TF.slim
中的多任务学习模型中创建损失函数:
# Load the images and labels.
images, scene_labels, depth_labels = ...
# Create the model.
scene_predictions, depth_predictions = CreateMultiTaskModel(images)
# Define the loss functions and get the total loss.
classification_loss = slim.losses.softmax_cross_entropy(scene_predictions, scene_labels)
sum_of_squares_loss = slim.losses.sum_of_squares(depth_predictions, depth_labels)
# The following two lines have the same effect:
total_loss = classification_loss + sum_of_squares_loss
total_loss = slim.losses.get_total_loss(add_regularization_losses=False)
here描述了使用TF-slim
评估单任务模型:
mport tensorflow as tf
slim = tf.contrib.slim
# Load the data
images, labels = load_data(...)
# Define the network
predictions = MyModel(images)
# Choose the metrics to compute:
names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({
'accuracy': slim.metrics.accuracy(predictions, labels),
'precision': slim.metrics.precision(predictions, labels),
'recall': slim.metrics.recall(mean_relative_errors, 0.3),
})
# Create the summary ops such that they also print out to std output:
summary_ops = []
for metric_name, metric_value in metrics_to_values.iteritems():
op = tf.scalar_summary(metric_name, metric_value)
op = tf.Print(op, [metric_value], metric_name)
summary_ops.append(op)
num_examples = 10000
batch_size = 32
num_batches = math.ceil(num_examples / float(batch_size))
# Setup the global step.
slim.get_or_create_global_step()
output_dir = ... # Where the summaries are stored.
eval_interval_secs = ... # How often to run the evaluation.
slim.evaluation.evaluation_loop(
'local',
checkpoint_dir,
log_dir,
num_evals=num_batches,
eval_op=names_to_updates.values(),
summary_op=tf.merge_summary(summary_ops),
eval_interval_secs=eval_interval_secs)
我的问题是,如果我想要评估一个多任务模型,如何在TF-slim
或tensorflow
中执行此操作,或仅使用数学方法来解决此问题?