下面有一个表格
Name Mon Tue Wed Thu Fri Sat Sun
1 John Apple Orange Apple Banana Apple Apple Orange
2 Ricky Banana Apple Banana Banana Banana Banana Apple
3 Alex Apple Orange Orange Apple Apple Orange Orange
4 Robbin Apple Apple Apple Apple Apple Banana Banana
5 Sunny Banana Banana Apple Apple Apple Banana Banana
所以,我想为每个人计算最频繁的水果,并在新栏中添加这些值。
例如。
Name Mon Tue Wed Thu Fri Sat Sun Max_Acc Count
1 John Apple Orange Apple Banana Apple Apple Orange Apple 4
2 Ricky Banana Apple Banana Banana Banana Banana Apple Banana 5
3 Alex Apple Orange Orange Apple Apple Orange Orange Orange 4
4 Robbin Apple Apple Apple Apple Apple Banana Banana Apple 5
5 Sunny Banana Banana Apple Apple Apple Banana Banana Banana 4
我在查找行时遇到问题。我可以使用table()
函数在列中找到频率。
>table(df$Mon)
Apple Banana
3 2
但在这里,我想要新专栏中最常见水果的名称。
答案 0 :(得分:2)
如果我们需要与max
“Count”对应的“Count”和“Names”,我们循环遍历数据集的行(使用apply
和MARGIN = 1
),使用table
获取频率,从中提取最大值以及与原始数据集最大值names
和rbind
对应的cbind
。
cbind(df1, do.call(rbind, apply(df1[-1], 1, function(x) {
x1 <- table(x)
data.frame(Count = max(x1), Names=names(x1)[which.max(x1)])})))
# Name Mon Tue Wed Thu Fri Sat Sun Count Names
#1 John Apple Orange Apple Banana Apple Apple Orange 4 Apple
#2 Ricky Banana Apple Banana Banana Banana Banana Apple 5 Banana
#3 Alex Apple Orange Orange Apple Apple Orange Orange 4 Orange
#4 Robbin Apple Apple Apple Apple Apple Banana Banana 5 Apple
#5 Sunny Banana Banana Apple Apple Apple Banana Banana 4 Banana
或者我们可以使用data.table
library(data.table)
setDT(df1)[, c("Names", "Count") := {tbl <- table(unlist(.SD))
.(names(tbl)[which.max(tbl)], max(tbl))}, by = Name]
答案 1 :(得分:1)
另一种方法是循环所有独特的水果如下
fruits_unique <- unique(unlist(dat[-1]))
occurence <- sapply(fruits_unique, function(x) rowSums(dat[,-1] == x))
# Using this data to create the resulting columns
ind <- apply(occurence,1,which.max)
dat$Names <- fruits_unique[ind]
dat$count <- occurence[cbind(seq_along(ind), ind)]
结果:
Name Mon Tue Wed Thu Fri Sat Sun Names Count
1 John Apple Orange Apple Banana Apple Apple Orange Apple 4
2 Ricky Banana Apple Banana Banana Banana Banana Apple Banana 5
3 Alex Apple Orange Orange Apple Apple Orange Orange Orange 4
4 Robbin Apple Apple Apple Apple Apple Banana Banana Apple 5
5 Sunny Banana Banana Apple Apple Apple Banana Banana Banana 4