我正在尝试学习一些关于最近邻居匹配的知识。下面是两个散点图。第一个显示真实数据。我试图使用scikit-learn的NN分类器来识别白色观察。第二个散点图显示了我的成就 - 正如你所看到的那样完全没用。
我不知道为什么会这样?似乎白色观测与其他观测密切相关并且不同。这里发生了什么?
以下是我的工作:
# import neccessary packages
import pandas as pd
import numpy as np
import sklearn as skl
from sklearn.cross_validation import train_test_split as tts
import matplotlib.pyplot as plt
from sklearn import neighbors
from matplotlib.colors import ListedColormap
# import data and give a little overview
sample = pd.read_stata('real_data_1.dta')
s = sample
print(s.dtypes)
print(s.shape)
# Nearest Neighboor
print(__doc__)
n_neighbors = 1
X = np.array((s.t_ums_ma, s.t_matauf)).reshape(918, 2)
y = np.array(s.matauf_measure)
plt.scatter(s.t_ums_ma,s.t_matauf, c=s.matauf_measure, label='Nordan Scatter', color='b', s=25, marker="o")
plt.xlabel('crisis')
plt.ylabel('current debt')
plt.title('Interesting Graph\nCheck it out')
plt.legend()
plt.gray()
plt.show()
X_train, X_test, y_train, y_test = tts(X, y, test_size = 1)
h = 0.02
# Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])
for weights in ['uniform', 'distance']:
# we create an instance of Neighbours Classifier and fit the data.
clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
clf.fit(X, y)
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
x_min, x_max = X_train[:, 0].min() - 0.01, X[:, 0].max() + 0.01
y_min, y_max = X_train[:, 1].min() - 0.01, X[:, 1].max() + 0.01
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.title("3-Class classification (k = %i, weights = '%s')"
% (n_neighbors, weights))
plt.show()
非常感谢任何帮助!最佳/ R