keras模型中卷积层的可视化

时间:2016-09-01 21:01:25

标签: python visualization keras

我在Keras(我是新手)创建了一个模型,并以某种方式设法很好地训练它。它需要300x300个图像,并尝试将它们分为两组。

$('.checkbox-inline label').text();

现在我想想象第二个卷积层,如果可能的话,还想看第一个密集层。 “灵感”取自keras blog。通过使用# size of image in pixel img_rows, img_cols = 300, 300 # number of classes (here digits 1 to 10) nb_classes = 2 # number of convolutional filters to use nb_filters = 16 # size of pooling area for max pooling nb_pool = 20 # convolution kernel size nb_conv = 20 X = np.vstack([X_train, X_test]).reshape(-1, 1, img_rows, img_cols) y = np_utils.to_categorical(np.concatenate([y_train, y_test]), nb_classes) # build model model = Sequential() model.add(Convolution2D(nb_filters, nb_conv, nb_conv, border_mode='valid', input_shape=(1, img_rows, img_cols))) model.add(Activation('relu')) model.add(Convolution2D(nb_filters, nb_conv, nb_conv)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(64)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(nb_classes)) model.add(Activation('softmax')) # run model model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy']) ,我找到了图层的名称。然后我创建了以下frankenstein代码:

model.summary()

执行后我得到:

from __future__ import print_function
from scipy.misc import imsave
import numpy as np
import time
#from keras.applications import vgg16
import keras
from keras import backend as K

# dimensions of the generated pictures for each filter.
img_width = 300
img_height = 300

# the name of the layer we want to visualize
# (see model definition at keras/applications/vgg16.py)
layer_name = 'convolution2d_2'
#layer_name = 'dense_1'

# util function to convert a tensor into a valid image
def deprocess_image(x):
    # normalize tensor: center on 0., ensure std is 0.1
    x -= x.mean()
    x /= (x.std() + 1e-5)
    x *= 0.1

    # clip to [0, 1]
    x += 0.5
    x = np.clip(x, 0, 1)

    # convert to RGB array
    x *= 255
    if K.image_dim_ordering() == 'th':
        x = x.transpose((1, 2, 0))
    x = np.clip(x, 0, 255).astype('uint8')
    return x

# load model
loc_json = 'my_model_short_architecture.json'
loc_h5 = 'my_model_short_weights.h5'

with open(loc_json, 'r') as json_file:
    loaded_model_json = json_file.read()

model = keras.models.model_from_json(loaded_model_json)

# load weights into new model
model.load_weights(loc_h5)
print('Model loaded.')

model.summary()

# this is the placeholder for the input images
input_img = model.input

# get the symbolic outputs of each "key" layer (we gave them unique names).
layer_dict = dict([(layer.name, layer) for layer in model.layers[1:]])


def normalize(x):
    # utility function to normalize a tensor by its L2 norm
    return x / (K.sqrt(K.mean(K.square(x))) + 1e-5)


kept_filters = []
for filter_index in range(0, 200):
    # we only scan through the first 200 filters,
    # but there are actually 512 of them
    print('Processing filter %d' % filter_index)
    start_time = time.time()

    # we build a loss function that maximizes the activation
    # of the nth filter of the layer considered
    layer_output = layer_dict[layer_name].output
    if K.image_dim_ordering() == 'th':
        loss = K.mean(layer_output[:, filter_index, :, :])
    else:
        loss = K.mean(layer_output[:, :, :, filter_index])


    # we compute the gradient of the input picture wrt this loss
    grads = K.gradients(loss, input_img)[0]

    # normalization trick: we normalize the gradient
    grads = normalize(grads)

    # this function returns the loss and grads given the input picture
    iterate = K.function([input_img], [loss, grads])

    # step size for gradient ascent
    step = 1.

    # we start from a gray image with some random noise
    if K.image_dim_ordering() == 'th':
        input_img_data = np.random.random((1, 3, img_width, img_height))
    else:
        input_img_data = np.random.random((1, img_width, img_height, 3))
    input_img_data = (input_img_data - 0.5) * 20 + 128

    # we run gradient ascent for 20 steps
    for i in range(20):
        loss_value, grads_value = iterate([input_img_data])
        input_img_data += grads_value * step

        print('Current loss value:', loss_value)
        if loss_value <= 0.:
            # some filters get stuck to 0, we can skip them
            break

    # decode the resulting input image
    if loss_value > 0:
        img = deprocess_image(input_img_data[0])
        kept_filters.append((img, loss_value))
    end_time = time.time()
    print('Filter %d processed in %ds' % (filter_index, end_time - start_time))

# we will stich the best 64 filters on a 8 x 8 grid.
n = 8

# the filters that have the highest loss are assumed to be better-looking.
# we will only keep the top 64 filters.
kept_filters.sort(key=lambda x: x[1], reverse=True)
kept_filters = kept_filters[:n * n]

# build a black picture with enough space for
# our 8 x 8 filters of size 128 x 128, with a 5px margin in between
margin = 5
width = n * img_width + (n - 1) * margin
height = n * img_height + (n - 1) * margin
stitched_filters = np.zeros((width, height, 3))

# fill the picture with our saved filters
for i in range(n):
    for j in range(n):
        img, loss = kept_filters[i * n + j]
        stitched_filters[(img_width + margin) * i: (img_width + margin) * i + img_width,
                         (img_height + margin) * j: (img_height + margin) * j + img_height, :] = img

# save the result to disk
imsave('stitched_filters_%dx%d.png' % (n, n), stitched_filters)

我想我有一些不好的尺寸,但甚至不知道从哪里开始。任何帮助,将不胜感激。感谢。

4 个答案:

答案 0 :(得分:4)

Keras让人很容易获得图层&#39;权重和产出。请查看https://keras.io/layers/about-keras-layers/https://keras.io/getting-started/functional-api-guide/#the-concept-of-layer-node

您基本上可以使用每个图层的weightsoutput属性来获取它。

答案 1 :(得分:2)

在您的网络中,第一个卷积层中只有16个过滤器,接下来是16个过滤器,因此您有32个卷积过滤器。但是你正在运行for循环200.尝试将其更改为16或32.我正在使用TF后端运行此代码,它适用于我的小型CNN。 另外,更改图像拼接代码:

for i in range(n):
    for j in range(n):
        if(i * n + j)<=len(kept_filters)-1:

最好的运气......

答案 2 :(得分:2)

看看这个项目:

https://github.com/philipperemy/keras-visualize-activations

您可以提取每个图层的激活贴图。它适用于所有Keras型号。

答案 3 :(得分:1)

只是一个简单的功能,如

def plot_conv_weights(model, layer_name):
    W = model.get_layer(name=layer_name).get_weights()[0]
    if len(W.shape) == 4:
        W = np.squeeze(W)
        W = W.reshape((W.shape[0], W.shape[1], W.shape[2]*W.shape[3])) 
        fig, axs = plt.subplots(5,5, figsize=(8,8))
        fig.subplots_adjust(hspace = .5, wspace=.001)
        axs = axs.ravel()
        for i in range(25):
            axs[i].imshow(W[:,:,i])
            axs[i].set_title(str(i))

可以解决您的问题(只有卷积层)