我是新来的火花和斯卡拉。假设我有一个列表的数据框是键值对。有没有办法将列ID的id变量映射为新列?
df.show()
+--------------------+-------------------- +
| ids | vals |
+--------------------+-------------------- +
|[id1,id2,id3] | null |
|[id2,id5,id6] |[WrappedArray(0,2,4)] |
|[id2,id4,id7] |[WrappedArray(6,8,10)]|
预期产出:
+----+----+
|id1 | id2| ...
+----+----+
|null| 0 | ...
|null| 6 | ...
答案 0 :(得分:3)
一种可能的方法是计算新DataFrame的列,并使用这些列来构造行。
import org.apache.spark.sql.functions._
val data = List((Seq("id1","id2","id3"),None),(Seq("id2","id4","id5"),Some(Seq(2,4,5))),(Seq("id3","id5","id6"),Some(Seq(3,5,6))))
val df = sparkContext.parallelize(data).toDF("ids","values")
val values = df.flatMap{
case Row(t1:Seq[String], t2:Seq[Int]) => Some((t1 zip t2).toMap)
case Row(_, null) => None
}
// get the unique names of the columns across the original data
val ids = df.select(explode($"ids")).distinct.collect.map(_.getString(0))
// map the values to the new columns (to Some value or None)
val transposed = values.map(entry => Row.fromSeq(ids.map(id => entry.get(id))))
// programmatically recreate the target schema with the columns we found in the data
import org.apache.spark.sql.types._
val schema = StructType(ids.map(id => StructField(id, IntegerType, nullable=true)))
// Create the new DataFrame
val transposedDf = sqlContext.createDataFrame(transposed, schema)
此过程将传递数据2次,但根据后备数据源,计算列名可能相当便宜。
此外,这在DataFrames
和RDD
之间来回传递。我有兴趣看到一个“纯粹的”DataFrame进程。