这是我的问题
我们说数据框上有2列,如下所示:
Type | Killed
_______ |________
Dog 1
Dog nan
Dog nan
Cat 4
Cat nan
Cow 1
Cow nan
我想根据类型显示所有缺失的值并计算它们
我的愿望结果看起来像这样:
Type | Sum(isnull)
Dog 2
Cat 1
Cow 1
无论如何都要显示这个?
答案 0 :(得分:3)
您可以boolean indexing
使用value_counts
:
print (df.ix[df.Killed.isnull(), 'Type'].value_counts().reset_index(name='Sum(isnull)'))
index Sum(isnull)
0 Dog 2
1 Cow 1
2 Cat 1
或汇总size
,似乎更快:
print (df[df.Killed.isnull()]
.groupby('Type')['Killed']
.size()
.reset_index(name='Sum(isnull)'))
Type Sum(isnull)
0 Cat 1
1 Cow 1
2 Dog 2
<强>计时强>:
df = pd.concat([df]*1000).reset_index(drop=True)
In [30]: %timeit (df.ix[df.Killed.isnull(), 'Type'].value_counts().reset_index(name='Sum(isnull)'))
100 loops, best of 3: 5.36 ms per loop
In [31]: %timeit (df[df.Killed.isnull()].groupby('Type')['Killed'].size().reset_index(name='Sum(isnull)'))
100 loops, best of 3: 2.02 ms per loop
答案 1 :(得分:1)