考虑一个例子:
#include <type_traits>
template <class T, T>
struct has_duplicates_info { };
template <class T, T...>
struct has_duplicates;
template <class T, T First, T... Others>
struct has_duplicates<T, First, Others...>:
has_duplicates<T, Others...>,
has_duplicates_info<T, First> {
static constexpr bool value =
std::is_base_of<has_duplicates_info<T, First>, has_duplicates<T, Others...>>::value
|| has_duplicates<T, Others...>::value;
};
template <class T, T Last>
struct has_duplicates<T, Last>: has_duplicates_info<T, Last>, std::false_type { };
int a, b;
int main() {
static_assert(!has_duplicates<int, 0, 1, 2>::value, "has_duplicates<int, 0, 1, 2>::value");
static_assert(has_duplicates<int, 1, 2, 2, 3>::value, "!has_duplicates<int, 1, 2, 2, 3>::value");
static_assert(has_duplicates<int&, a, a, b>::value, "!has_duplicates<int&, a, a, b>::value");
}
这可以用clang编译,但不能用gcc编译。问题在于:
static_assert(has_duplicates<int&, a, a, b>::value, "has_duplicates<int&, a, a, b>::value");
编译器建议has_duplicates<int&, a, a, b>
是不完整的类型:
has_duplicates.cc:26:18: error: incomplete type ‘has_duplicates<int&, a, a, b>’ used in nested name specifier static_assert(has_duplicates<int&, a, a, b>::value, "has_duplicates<int&, a, a, b>::value"); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
那么...哪个编译器是对的?
修改
澄清我不试图检查传递给has_duplicates
的变量后面的运行时值是否包含重复项,只有在传递给该特征的重复引用时... ...下面的代码在gcc和clang中成功编译:
template <int &X>
struct a { };
int b;
int main() {
a<b> c;
}
答案 0 :(得分:5)
First off, it's definitely a bug in gcc. You're nearly correct in your diagnosis of the nature of the bug, but it's not that gcc doesn't accept reference-type non-type template parameters, it's rather that gcc fails to recognise reference-type non-type template parameters as a class template partial specialization where the reference type is a previous template parameter:
template<int, class T, T> struct S; // #1
template<class T, T A> struct S<0, T, A> {}; // #2
int i;
S<0, int&, i> s; // #3 error: aggregate 'S<0, int&, i> s' has incomplete type
#2
is a perfectly legitimate partial specialization of #1
and should be matched by the instantiation #3
, per [temp.class.spec.match] and [temp.deduct].
Fortunately, there's a simple workaround, which is to provide a further partial specialization for reference types:
template<class R, R& A> struct S<0, R&, A> {};
A correct compiler like clang will also be fine with this.
In your case the further partial specializations would be:
template <class R, R& First, R&... Others>
struct has_duplicates<R&, First, Others...> // ...
template <class R, R& Last>
struct has_duplicates<R&, Last> // ...