我采用以下格式的Dataframe:
| Department | Person | Power | ... |
|------------|--------|--------|-----|
| ABC | 1234 | 75 | ... |
| ABC | 1235 | 25 | ... |
| DEF | 1236 | 50 | ... |
| DEF | 1237 | 100 | ... |
| DEF | 1238 | 25 | ... |
| DEF | 1239 | 50 | ... |
我现在想要得到的是电源列中每个值的出现总和。如何从我的DataFrame中获取此信息?
| Department | 100 | 75 | 50 | 25 |
|------------|-----|-----|-----|-----|
| ABC | 0 | 1 | 0 | 1 |
| DEF | 1 | 0 | 2 | 1 |
答案 0 :(得分:4)
您可以将value_counts
与sort_index
一起使用,然后按to_frame
生成DataFrame
,最后按T
进行转置:
print (df.Power.value_counts().sort_index(ascending=False).to_frame().T)
100 75 50 25
Power 1 1 2 2
通过评论编辑:
您需要crosstab
:
print (pd.crosstab(df.Department, df.Power).sort_index(axis=1, ascending=False))
Power 100 75 50 25
Department
ABC 0 1 0 1
DEF 1 0 2 1
print (df.groupby(['Department','Power'])
.size()
.unstack(fill_value=0)
.sort_index(axis=1, ascending=False))
Power 100 75 50 25
Department
ABC 0 1 0 1
DEF 1 0 2 1
如果列groupby
和Department
需要Person
,请将Person
列添加到groupby
第二个位置(谢谢piRSquared):
print (df.groupby(['Department','Person', 'Power'])
.size()
.unstack(fill_value=0)
.sort_index(axis=1, ascending=False))
Power 100 75 50 25
Department Person
ABC 1234 0 1 0 0
1235 0 0 0 1
DEF 1236 0 0 1 0
1237 1 0 0 0
1238 0 0 0 1
1239 0 0 1 0
EDIT1评论:
如果需要添加其他缺失值,请使用reindex
:
print (df.groupby(['Department','Power'])
.size()
.unstack(fill_value=0)
.reindex(columns=[100,75,50,25,0], fill_value=0))
Power 100 75 50 25 0
Department
ABC 0 1 0 1 0
DEF 1 0 2 1 0
答案 1 :(得分:1)
或者可以这样做:
>>> df.groupby(['Department','Power']).count().unstack().fillna(0)
Person
Power 25 50 75 100
Department
ABC 1.0 0.0 1.0 0.0
DEF 1.0 2.0 0.0 1.0