有四辆车:bmw
,geo
,vw
和porsche
:
import pandas as pd
df = pd.DataFrame({
'car': ['bmw','geo','vw','porsche'],
'warranty': ['yes','yes','yes','no'],
'dvd': ['yes','yes','no','yes'],
'sunroof': ['yes','no','no','no']})
我想创建一个过滤的DataFrame,它只列出那些具有所有三种功能的汽车:DVD播放器,天窗和保修(我们知道这里的宝马所有功能都设置为'是')。
我可以在以下时间用一栏完成:
cars_with_warranty = df['car'][df['warranty']=='yes']
print(cars_with_warranty)
然后我需要为dvd和天窗列进行类似的列计算:
cars_with_dvd = df['car'][df['dvd']=='yes']
cars_with_sunroof = df['car'][df['sunroof']=='yes']
我想知道是否有一种聪明的方法来创建过滤的DataFrame
?
发布的解决方案效果很好。但结果cars_with_all_three
是一个简单的列表变量。我们需要DataFrame对象,只有一个'bmw'汽车作为唯一的行和所有三列:dvd,天窗和保修(所有三个值都设置为'是')。
cars_with_all_three = []
for ind, car in enumerate(df['car']):
if df['dvd'][ind] == df['warranty'][ind] == df['sunroof'][ind] == 'yes':
cars_with_all_three.append(car)
答案 0 :(得分:4)
您可以使用boolean indexing
:
print ((df.dvd == 'yes') & (df.sunroof == 'yes') & (df.warranty == 'yes'))
0 True
1 False
2 False
3 False
dtype: bool
print (df[(df.dvd == 'yes') & (df.sunroof == 'yes') & (df.warranty == 'yes')])
car dvd sunroof warranty
0 bmw yes yes yes
#if need filter only column 'car'
print (df.ix[(df.dvd == 'yes')&(df.sunroof == 'yes')&(df.warranty == 'yes'), 'car'])
0 bmw
Name: car, dtype: object
另一个解决方案,检查列中的所有值是否为yes
,然后all
检查所有值是否为True
:
print ((df[[ u'dvd', u'sunroof', u'warranty']] == "yes").all(axis=1))
0 True
1 False
2 False
3 False
dtype: bool
print (df[(df[[ u'dvd', u'sunroof', u'warranty']] == "yes").all(axis=1)])
car dvd sunroof warranty
0 bmw yes yes yes
print (df.ix[(df[[ u'dvd', u'sunroof', u'warranty']] == "yes").all(axis=1), 'car'])
0 bmw
Name: car, dtype: object
使用最少代码的解决方案,如果DataFrame
只有4
列,例如sample:
print (df[(df.set_index('car') == 'yes').all(1).values])
car dvd sunroof warranty
0 bmw yes yes yes
<强>计时强>:
In [44]: %timeit ([car for ind, car in enumerate(df['car']) if df['dvd'][ind] == df['warranty'][ind] == df['sunroof'][ind] == 'yes'])
10 loops, best of 3: 120 ms per loop
In [45]: %timeit (df[(df.dvd == 'yes')&(df.sunroof == 'yes')&(df.warranty == 'yes')])
The slowest run took 4.39 times longer than the fastest. This could mean that an intermediate result is being cached.
100 loops, best of 3: 2.09 ms per loop
In [46]: %timeit (df[(df[[ u'dvd', u'sunroof', u'warranty']] == "yes").all(axis=1)])
1000 loops, best of 3: 1.53 ms per loop
In [47]: %timeit (df[(df.ix[:, [u'dvd', u'sunroof', u'warranty']] == "yes").all(axis=1)])
The slowest run took 4.46 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 3: 1.51 ms per loop
In [48]: %timeit (df[(df.set_index('car') == 'yes').all(1).values])
1000 loops, best of 3: 1.64 ms per loop
In [49]: %timeit (mer(df))
The slowest run took 4.17 times longer than the fastest. This could mean that an intermediate result is being cached.
100 loops, best of 3: 3.85 ms per loop
时间安排的代码:
df = pd.DataFrame({
'car': ['bmw','geo','vw','porsche'],
'warranty': ['yes','yes','yes','no'],
'dvd': ['yes','yes','no','yes'],
'sunroof': ['yes','no','no','no']})
print (df)
df = pd.concat([df]*1000).reset_index(drop=True)
def mer(df):
df = df.set_index('car')
return df[df[[ u'dvd', u'sunroof', u'warranty']] == "yes"].dropna().reset_index()
答案 1 :(得分:4)
试试这个:
df = df.set_index('car')
df[df[[ u'dvd', u'sunroof', u'warranty']] == "yes"].dropna().reset_index()
df
car dvd sunroof warranty
0 bmw yes yes yes
df = df.set_index('car')
df[df[[ u'dvd', u'sunroof', u'warranty']]== "yes"].dropna().index.values
['bmw']
答案 2 :(得分:3)
您可以使用简单loop
与enumerate
:
cars_with_all_three = []
for ind, car in enumerate(df['car']):
if df['dvd'][ind] == df['warranty'][ind] == df['sunroof'][ind] == 'yes':
cars_with_all_three.append(car)
如果您执行print(cars_with_all_three)
,则会获得['bmw']
。
或者,如果你想变得非常聪明并且使用单行,你可以这样做:
[car for ind, car in enumerate(df['car']) if df['dvd'][ind] == df['warranty'][ind] == df['sunroof'][ind] == 'yes']
希望有所帮助