我正在尝试使用f_i(x)= m_ix + b_i等模型在张量流中建立模型,以便:
f(x) = [f_1(x), f_2(x)]^T [x, x] + b
这只是一个练习。我的困难在于理解如何连接两个张量:
# Model 1
f1 = tf.add(tf.mul(X, W), b)
# Model 2
f2 = tf.add(tf.mul(X, W2), b2)
# Concatenate 1 & 2
fi = tf.concat(0, [f1, f2])
# Final model
pred = tf.add(tf.mul(fi, W3), b3)
不幸的是,这似乎不起作用。
以下是完整的示例:
'''
A linear regression learning algorithm example using TensorFlow library.
Author: Aymeric Damien (original author) # I am altering it though
Project: https://github.com/aymericdamien/TensorFlow-Examples/
'''
from __future__ import print_function
import tensorflow as tf
import numpy
import matplotlib.pyplot as plt
rng = numpy.random
# Parameters
learning_rate = 0.01
training_epochs = 1000
display_step = 50
# Training Data
train_X = numpy.asarray(
[3.3, 4.4, 5.5, 6.71, 6.93, 4.168, 9.779, 6.182, 7.59, 2.167,
7.042, 10.791, 5.313, 7.997, 5.654, 9.27, 3.1])
train_Y = numpy.asarray(
[1.7, 2.76, 2.09, 3.19, 1.694, 1.573, 3.366, 2.596, 2.53, 1.221,
2.827, 3.465, 1.65, 2.904, 2.42, 2.94, 1.3])
n_samples = train_X.shape[0]
# tf Graph Input
X = tf.placeholder("float")
Y = tf.placeholder("float")
# Set model weights
W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias")
W2 = tf.Variable(rng.randn(), name="weight2")
b2 = tf.Variable(rng.randn(), name="bias2")
W3 = tf.Variable([rng.randn(), rng.randn()], name="weight3")
b3 = tf.Variable(rng.randn(), name="bias3")
# Model 1
f1 = tf.add(tf.mul(X, W), b)
# Model 2
f2 = tf.add(tf.mul(X, W2), b2)
# Concatenate 1 & 2
fi = tf.concat(0, [f1, f2])
# Final model
pred = tf.add(tf.mul(fi, W3), b3)
# Mean squared error
cost = tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * n_samples)
# Gradient descent
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# Initializing the variables
init = tf.initialize_all_variables()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
# Fit all training data
for epoch in range(training_epochs):
for (x, y) in zip(train_X, train_Y):
sess.run(optimizer, feed_dict={X: x, Y: y})
# Display logs per epoch step
if (epoch + 1) % display_step == 0:
c = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
print("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(c), \
"W=", sess.run(W), "b=", sess.run(b))
print("Optimization Finished!")
training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b),
'\n')
# Graphic display
plt.plot(train_X, train_Y, 'ro', label='Original data')
plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
plt.legend()
plt.show()
# Testing example, as requested (Issue #2)
test_X = numpy.asarray([6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1])
test_Y = numpy.asarray([1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03])
print("Testing... (Mean square loss Comparison)")
testing_cost = sess.run(
tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * test_X.shape[0]),
feed_dict={X: test_X, Y: test_Y}) # same function as cost above
print("Testing cost=", testing_cost)
print("Absolute mean square loss difference:", abs(
training_cost - testing_cost))
plt.plot(test_X, test_Y, 'bo', label='Testing data')
plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
plt.legend()
plt.show()
答案 0 :(得分:1)
在没有tf.concat
头痛的情况下获得类似结果的一种方法是
pred = tf.add(tf.add(f1, f2), b3)