我是编程,python和stackflow的新手,所以在我解释这个时请耐心等待。
我正在编写一个python脚本,其中数据集中包含4组值(a,b,c& x0)。我有3个这样的数据集。
目前,我正在使用单选按钮在数据集之间切换,它的工作完全正常。
在稍后阶段,需要显示数据集1&amp; 2,1&amp; 3,2&amp; 3或1,2&amp; 3之间的分布比较,这是我设法使用单选按钮实现的(见下图)< / p>
我现在正在寻找使用检查按钮而不是单选按钮,因为它可以让我实现与单选按钮相同的结果,只使用3个标签(数据集1,数据集2和数据集3)而不是7
但是,我不知道如何更新检查按钮以使它们执行比较。
我的代码如下所示:
import numpy as np
print np.__version__
import scipy
print scipy.__version__
from scipy.stats import norm, lognorm, stats, uniform
import matplotlib
print matplotlib.__version__
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider, Button, RadioButtons
from matplotlib.patches import Polygon
#####Importing Data from csv file#####
dataset1 = np.genfromtxt('dataSet1.csv', dtype = float, delimiter = ',', skip_header = 1, names = ['a', 'b', 'c', 'x0'])
dataset2 = np.genfromtxt('dataSet2.csv', dtype = float, delimiter = ',', skip_header = 1, names = ['a', 'b', 'c', 'x0'])
dataset3 = np.genfromtxt('dataSet3.csv', dtype = float, delimiter = ',', skip_header = 1, names = ['a', 'b', 'c', 'x0'])
#####_____#####
#####Creating Subplots#####
fig = plt.figure()
plt.subplots_adjust(left=0.13,right=0.99,bottom=0.05)
ax1 = fig.add_subplot(331) #Subplot 1
ax1.set_xlabel('a' , fontsize = 14)
ax1.grid(True)
ax2 = fig.add_subplot(334) #Subplot 2
ax2.set_xlabel('b', fontsize = 14)
ax2.grid(True)
ax3 = fig.add_subplot(337) #Subplot 3
ax3.set_xlabel('c', fontsize = 14)
ax3.grid(True)
ax4 = fig.add_subplot(132) #Subplot 4
ax4.set_xlabel('x0', fontsize = 14)
ax4.set_ylabel('PDF', fontsize = 14)
ax4.grid(True)
ax5 = fig.add_subplot(133) #Subplot 5
ax5.set_xlabel('x0', fontsize = 14)
ax5.set_ylabel('CDF', fontsize = 14)
ax5.grid(True)
#####_____#####
#####Plotting Distributions#####
[n1,bins1,patches] = ax1.hist(dataset1['a'], bins=50, color = 'red',alpha = 0.5, normed = True)
[n2,bins2,patches] = ax2.hist(dataset1['b'], bins=50, color = 'red',alpha = 0.5, normed = True)
[n3,bins3,patches] = ax3.hist(dataset1['c'], bins=50, color = 'red',alpha = 0.5, normed = True)
[n4,bins4,patches] = ax4.hist(dataset1['x0'], bins=50, color = 'red',alpha = 0.5, normed = True)
dx = bins4[1] - bins4[0]
CDF = np.cumsum(n4)*dx
ax5.plot(bins4[1:], CDF)
#####_____#####
#######Creating Radio Buttons#####
axcolor = 'lightgoldenrodyellow'
rax = plt.axes([0.015, 0.86, 0.08, 0.13], axisbg=axcolor)
radio1 = RadioButtons(rax, ('Data Set1', 'Data Set2', 'Data Set3', 'Data Set 1&2', 'Data Set 1&3', 'Data Set 2&3', 'Data Set 1,2&3'))
#####_____#####
#####Updating Radio Button#####
radio1_label = 'Data Set1'
func = {'Data Set1': dataset1, 'Data Set2': dataset2, 'Data Set3': dataset3, 'Data Set 1&2': dataset1, 'Data Set 1&3': dataset1, 'Data Set 2&3': dataset1, 'Data Set 1,2&3': dataset1}
axcl = {'Data Set1': 'red', 'Data Set2': 'blue', 'Data Set3': 'green', 'Data Set 1&2': None, 'Data Set 1&3': None, 'Data Set 2&3': None, 'Data Set 1,2&3': None}
def update_radio1(label):
global radio1_label #so we can overwrite the variable defined above and not create a local one
radio1_label = label
print radio1_label
ax1.clear()
ax2.clear()
ax3.clear()
ax4.clear()
[n1,bins1,patches] = ax1.hist(func[radio1_label]['a'], bins=50, color = axcl[radio1_label], normed = True, alpha = 0.5)
[n2,bins2,patches] = ax2.hist(func[radio1_label]['b'], bins=50, color = axcl[radio1_label], normed = True, alpha = 0.5)
[n3,bins3,patches] = ax3.hist(func[radio1_label]['c'], bins=50, color = axcl[radio1_label], normed = True, alpha = 0.5)
[n4,bins4,patches] = ax4.hist(func[radio1_label]['x0'], bins=50, color = axcl[radio1_label], normed = True, alpha = 0.5)
ax1.grid(True)
ax2.grid(True)
ax3.grid(True)
ax4.grid(True)
ax5.grid(True)
if radio1_label == 'Data Set 1&2':
ax1.clear()
ax2.clear()
ax3.clear()
ax4.clear()
ax1.grid(True)
ax2.grid(True)
ax3.grid(True)
ax4.grid(True)
ax5.grid(True)
[n1,bins1,patches] = ax1.hist(dataset1['a'], bins=50, color = 'red', normed = True, alpha = 0.5)
[n2,bins2,patches] = ax2.hist(dataset1['b'], bins=50, color = 'red', normed = True, alpha = 0.5)
[n3,bins3,patches] = ax3.hist(dataset1['c'], bins=50, color = 'red', normed = True, alpha = 0.5)
[n4,bins4,patches] = ax4.hist(dataset1['x0'], bins=50, color = 'red', normed = True, alpha = 0.5)
[n1,bins1,patches] = ax1.hist(dataset2['a'], bins=50, color = 'blue', normed = True, alpha = 0.5)
[n2,bins2,patches] = ax2.hist(dataset2['b'], bins=50, color = 'blue', normed = True, alpha = 0.5)
[n3,bins3,patches] = ax3.hist(dataset2['c'], bins=50, color = 'blue', normed = True, alpha = 0.5)
[n4,bins4,patches] = ax4.hist(dataset2['x0'], bins=50, color = 'blue', normed = True, alpha = 0.5)
if radio1_label == 'Data Set 1&3':
ax1.clear()
ax2.clear()
ax3.clear()
ax4.clear()
ax1.grid(True)
ax2.grid(True)
ax3.grid(True)
ax4.grid(True)
ax5.grid(True)
[n1,bins1,patches] = ax1.hist(dataset1['a'], bins=50, color = 'red', normed = True, alpha = 0.5)
[n2,bins2,patches] = ax2.hist(dataset1['b'], bins=50, color = 'red', normed = True, alpha = 0.5)
[n3,bins3,patches] = ax3.hist(dataset1['c'], bins=50, color = 'red', normed = True, alpha = 0.5)
[n4,bins4,patches] = ax4.hist(dataset1['x0'], bins=50, color = 'red', normed = True, alpha = 0.5)
[n1,bins1,patches] = ax1.hist(dataset3['a'], bins=50, color = 'green', normed = True, alpha = 0.5)
[n2,bins2,patches] = ax2.hist(dataset3['b'], bins=50, color = 'green', normed = True, alpha = 0.5)
[n3,bins3,patches] = ax3.hist(dataset3['c'], bins=50, color = 'green', normed = True, alpha = 0.5)
[n4,bins4,patches] = ax4.hist(dataset3['x0'], bins=50, color = 'green', normed = True, alpha = 0.5)
if radio1_label == 'Data Set 2&3':
ax1.clear()
ax2.clear()
ax3.clear()
ax4.clear()
ax1.grid(True)
ax2.grid(True)
ax3.grid(True)
ax4.grid(True)
[n1,bins1,patches] = ax1.hist(dataset2['a'], bins=50, color = 'blue', normed = True, alpha = 0.5)
[n2,bins2,patches] = ax2.hist(dataset2['b'], bins=50, color = 'blue', normed = True, alpha = 0.5)
[n3,bins3,patches] = ax3.hist(dataset2['c'], bins=50, color = 'blue', normed = True, alpha = 0.5)
[n4,bins4,patches] = ax4.hist(dataset2['x0'], bins=50, color = 'blue', normed = True, alpha = 0.5)
[n1,bins1,patches] = ax1.hist(dataset3['a'], bins=50, color = 'green', normed = True, alpha = 0.5)
[n2,bins2,patches] = ax2.hist(dataset3['b'], bins=50, color = 'green', normed = True, alpha = 0.5)
[n3,bins3,patches] = ax3.hist(dataset3['c'], bins=50, color = 'green', normed = True, alpha = 0.5)
[n4,bins4,patches] = ax4.hist(dataset3['x0'], bins=50, color = 'green', normed = True, alpha = 0.5)
if radio1_label == 'Data Set 1,2&3':
ax1.clear()
ax2.clear()
ax3.clear()
ax4.clear()
ax1.grid(True)
ax2.grid(True)
ax3.grid(True)
ax4.grid(True)
[n1,bins1,patches] = ax1.hist(dataset1['a'], bins=50, color = 'red', normed = True, alpha = 0.5)
[n2,bins2,patches] = ax2.hist(dataset1['b'], bins=50, color = 'red', normed = True, alpha = 0.5)
[n3,bins3,patches] = ax3.hist(dataset1['c'], bins=50, color = 'red', normed = True, alpha = 0.5)
[n4,bins4,patches] = ax4.hist(dataset1['x0'], bins=50, color = 'red', normed = True, alpha = 0.5)
[n1,bins1,patches] = ax1.hist(dataset2['a'], bins=50, color = 'blue', normed = True, alpha = 0.5)
[n2,bins2,patches] = ax2.hist(dataset2['b'], bins=50, color = 'blue', normed = True, alpha = 0.5)
[n3,bins3,patches] = ax3.hist(dataset2['c'], bins=50, color = 'blue', normed = True, alpha = 0.5)
[n4,bins4,patches] = ax4.hist(dataset2['x0'], bins=50, color = 'blue', normed = True, alpha = 0.5)
[n1,bins1,patches] = ax1.hist(dataset3['a'], bins=50, color = 'green', normed = True, alpha = 0.5)
[n2,bins2,patches] = ax2.hist(dataset3['b'], bins=50, color = 'green', normed = True, alpha = 0.5)
[n3,bins3,patches] = ax3.hist(dataset3['c'], bins=50, color = 'green', normed = True, alpha = 0.5)
[n4,bins4,patches] = ax4.hist(dataset3['x0'], bins=50, color = 'green', normed = True, alpha = 0.5)
plt.draw()
radio1.on_clicked(update_radio1)
#####_____#####
plt.show()
我们非常感谢您的协助。
提前致谢。
答案 0 :(得分:1)
import numpy as np
print np.__version__
import scipy
print scipy.__version__
import matplotlib
print matplotlib.__version__
import matplotlib.pyplot as plt
from matplotlib.widgets import CheckButtons
#####Importing Data from csv file#####
dataset1 = np.genfromtxt('dataSet1.csv', dtype = float, delimiter = ',', skip_header = 1, names = ['a', 'b', 'c', 'x0'])
dataset2 = np.genfromtxt('dataSet2.csv', dtype = float, delimiter = ',', skip_header = 1, names = ['a', 'b', 'c', 'x0'])
dataset3 = np.genfromtxt('dataSet3.csv', dtype = float, delimiter = ',', skip_header = 1, names = ['a', 'b', 'c', 'x0'])
#####_____#####
#####Creating Subplots#####
fig = plt.figure()
plt.subplots_adjust(left=0.13,right=0.99,bottom=0.05)
ax1 = fig.add_subplot(331) #Subplot 1
ax1.set_xlabel('a' , fontsize = 14)
ax2 = fig.add_subplot(334) #Subplot 2
ax2.set_xlabel('b', fontsize = 14)
ax3 = fig.add_subplot(337) #Subplot 3
ax3.set_xlabel('c', fontsize = 14)
ax4 = fig.add_subplot(132) #Subplot 4
ax4.set_xlabel('x0', fontsize = 14)
ax4.set_ylabel('PDF', fontsize = 14)
ax5 = fig.add_subplot(133) #Subplot 5
ax5.set_xlabel('x0', fontsize = 14)
ax5.set_ylabel('CDF', fontsize = 14)
ax5.grid(True)
#####_____#####
radio1_label = 'Data Set1'
properties = [
['Data Set1', dataset1, 'red'],
['Data Set2', dataset2, 'blue'],
['Data Set3', dataset3, 'green']
]
func = {}
axcl = {}
flags = {}
for p in properties:
func[p[0]] = p[1]
axcl[p[0]] = p[2]
flags[p[0]] = p[0] == 'Data Set1'
#####Plotting Distributions#####
def plot_hists():
ax1.clear()
ax2.clear()
ax3.clear()
ax4.clear()
for p in properties:
lbl = p[0]
ax1.hist(func[lbl]['a'], bins=50, color=axcl[lbl], normed=True, alpha=0.5, visible=flags[lbl])
ax2.hist(func[lbl]['b'], bins=50, color=axcl[lbl], normed=True, alpha=0.5, visible=flags[lbl])
ax3.hist(func[lbl]['c'], bins=50, color=axcl[lbl], normed=True, alpha=0.5, visible=flags[lbl])
n4, bins4, patches = ax4.hist(func[lbl]['x0'], bins=50,color=axcl[lbl], normed=True, alpha=0.5, visible=flags[lbl])
ax1.grid(True)
ax2.grid(True)
ax3.grid(True)
ax4.grid(True)
return n4, bins4
n4, bins4 = plot_hists()
dx = bins4[1] - bins4[0]
CDF = np.cumsum(n4)*dx
ax5.plot(bins4[1:], CDF)
#######Creating Check Buttons#####
axcolor = 'lightgoldenrodyellow'
rax = plt.axes([0.015, 0.86, 0.08, 0.13], axisbg=axcolor)
check = CheckButtons(rax, ('Data Set1', 'Data Set2', 'Data Set3'), (True, False, False))
#####_____#####
#####Updating Check Button#####
def update_check1(label):
global radio1_label #so we can overwrite the variable defined above and not create a local one
radio1_label = label
print radio1_label
flags[label] = not flags[label]
plot_hists()
ax5.grid(True)
plt.draw()
check.on_clicked(update_check1)
#####_____#####
plt.show()