我有一个名为merged_df_energy的数据框
merged_df_energy.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 11232 entries, 0 to 11231
Data columns (total 17 columns):
TIMESTAMP 11232 non-null datetime64[ns]
P_ACT_KW 11232 non-null int64
PERIODE_TARIF 11232 non-null object
P_SOUSCR 11232 non-null int64
high_energy 11232 non-null int64
medium_energy 11232 non-null int64
low_energy 11232 non-null int64
0ACT_TIME_ETA_PRG_P2REF_RM 11232 non-null int64
0ACT_TIME_ETA_PRG_VDES_RM 11232 non-null int64
0ACT_TIME_ETA_PRG_P3REF_RM 11232 non-null int64
0ACT_TIME_ETA_POMP_RECIRC_N1 11232 non-null int64
0ACT_TIME_ETA_POMP_RECIRC_N2 11232 non-null int64
0ACT_TIME_ETA_POMP_RECIRC_N3 11232 non-null int64
0ACT_TIME_ETA_SURPRES_AIR_N1 11232 non-null int64
0ACT_TIME_ETA_SURPRES_AIR_N2 11232 non-null int64
0ACT_TIME_ETA_SURPRES_AIR_N3 11232 non-null int64
class_energy 11232 non-null object
dtypes: datetime64[ns](1), int64(14), object(2)
memory usage: 1.5+ MB
具有这种结构:
TIMESTAMP P_ACT_KW PERIODE_TARIF P_SOUSCR high_energy medium_energy low_energy 0ACT_TIME_ETA_PRG_P2REF_RM 0ACT_TIME_ETA_PRG_VDES_RM
0ACT_TIME_ETA_PRG_P3REF_RM 0ACT_TIME_ETA_POMP_RECIRC_N1 0ACT_TIME_ETA_POMP_RECIRC_N2 0ACT_TIME_ETA_POMP_RECIRC_N3
0ACT_TIME_ETA_SURPRES_AIR_N1 0ACT_TIME_ETA_SURPRES_AIR_N2
0ACT_TIME_ETA_SURPRES_AIR_N3 class_energy
2016-05-10 04:30:00 107 HP 250 107 0 0 100 0 0 0 0 0 0 0 0 high
2016-05-10 04:40:00 109 HC 250 109 0 0 0 0 100 0 0 0 0 0 0 high
2016-05-10 04:50:00 106 HP 250 106 0 0 0 0 100 0 0 0 0 0 0 high
我试图通过(class_energy)来计算(0ACT_TIME_ETA_PRG_P2REF_RM,0ACT_TIME_ETA_PRG_VDES_RM,0ACT_TIME_ETA_PRG_P3REF_RM,0ACT_TIME_ETA_POMP_RECIRC_N1 0ACT_TIME_ETA_POMP_RECIRC_N2,0ACT_TIME_ETA_POMP_RECIRC_N3,0ACT_TIME_ETA_SURPRES_AIR_N1,0ACT_TIME_ETA_SURPRES_AIR_N2,0ACT_TIME_ETA_SURPRES_AIR_N3 class_energy)基团的总和。
为此我做了:
df_F1 = (merged_df_energy.groupby(by=['class_energy'], as_index=False)['0ACT_TIME_ETA_PRG_P2REF_RM', '0ACT_TIME_ETA_PRG_VDES_RM','0ACT_TIME_ETA_PRG_P3REF_RM','0ACT_TIME_ETA_POMP_RECIRC_N1','0ACT_TIME_ETA_POMP_RECIRC_N2', '0ACT_TIME_ETA_POMP_RECIRC_N3', '0ACT_TIME_ETA_SURPRES_AIR_N1', '0ACT_TIME_ETA_SURPRES_AIR_N2', '0ACT_TIME_ETA_SURPRES_AIR_N3' ].sum())
它工作正常,但我想知道如何处理这种情况(如果PERIODE_TARIF =&#39; HP&#39;)?
答案 0 :(得分:2)
我认为您需要在groupby
boolean indexing
:
merged_df_energy1 = merged_df_energy[merged_df_energy.PERIODE_TARIF == 'HP']
cols = ['0ACT_TIME_ETA_PRG_P2REF_RM',
'0ACT_TIME_ETA_PRG_VDES_RM',
'0ACT_TIME_ETA_PRG_P3REF_RM',
'0ACT_TIME_ETA_POMP_RECIRC_N1',
'0ACT_TIME_ETA_POMP_RECIRC_N2',
'0ACT_TIME_ETA_POMP_RECIRC_N3',
'0ACT_TIME_ETA_SURPRES_AIR_N1',
'0ACT_TIME_ETA_SURPRES_AIR_N2',
'0ACT_TIME_ETA_SURPRES_AIR_N3']
df_F1 = (merged_df_energy1.groupby(by=['class_energy'], as_index=False)[cols].sum())
print (df_F1)
class_energy 0ACT_TIME_ETA_PRG_P2REF_RM 0ACT_TIME_ETA_PRG_VDES_RM \
0 high 100 0
0ACT_TIME_ETA_PRG_P3REF_RM 0ACT_TIME_ETA_POMP_RECIRC_N1 \
0 100 0
0ACT_TIME_ETA_POMP_RECIRC_N2 0ACT_TIME_ETA_POMP_RECIRC_N3 \
0 0 0
0ACT_TIME_ETA_SURPRES_AIR_N1 0ACT_TIME_ETA_SURPRES_AIR_N2 \
0 0 0
0ACT_TIME_ETA_SURPRES_AIR_N3
0 0
编辑:
如果从未更改过列的顺序,您可以使用:
cols = merged_df_energy.columns[7:16]
print (cols)
Index(['0ACT_TIME_ETA_PRG_P2REF_RM', '0ACT_TIME_ETA_PRG_VDES_RM',
'0ACT_TIME_ETA_PRG_P3REF_RM', '0ACT_TIME_ETA_POMP_RECIRC_N1',
'0ACT_TIME_ETA_POMP_RECIRC_N2', '0ACT_TIME_ETA_POMP_RECIRC_N3',
'0ACT_TIME_ETA_SURPRES_AIR_N1', '0ACT_TIME_ETA_SURPRES_AIR_N2',
'0ACT_TIME_ETA_SURPRES_AIR_N3'],
dtype='object')