我已经在R中使用不同的聚类方法(kmeans,hclust,agnes,funny)对风暴的能量数据进行聚类,但即使很容易为我的工作选择最佳方法,我也需要计算(而不是理论) )通过结果比较和评估方法的方法。你相信有什么东西吗?
提前致谢,
答案 0 :(得分:0)
感谢您提出的问题,我了解到您可以使用eclust
包中的factoextra
函数计算最佳群集数量
使用here
中的kmeans
演示
# Load and scale the dataset
data("USArrests")
DF <- scale(USArrests)
When data is not scaledd the clustering results might not be reliable [example](http://stats.stackexchange.com/questions/140711/why-does-gap-statistic-for-k-means-suggest-one-cluster-even-though-there-are-ob)
library("factoextra")
# Enhanced k-means clustering
res.km <- eclust(DF, "kmeans")
# Gap statistic plot
fviz_gap_stat(res.km$gap_stat)
群集功能的比较:
您可以使用所有可用方法并使用以下方法计算最佳群集数量:
clusterFuncList = c("kmeans", "pam", "clara", "fanny", "hclust", "agnes" ,"diana")
resultList <- sapply(clusterFuncList,function(x) {
cat("Begin clustering for function:",x,"\n")
#For each clustering function find optimal number of clusters, to disable plotting use graph=FALSE
clustObj = eclust(DF, x,graph=FALSE)
#return optimal number of clusters for each clustering function
cat("End clustering for function:",x,"\n\n\n")
resultDF = data.frame(clustFunc = x, optimalNumbClusters = clustObj$nbclust,stringsAsFactors=FALSE)
})
# >resultList
# clustFunc optimalNumbClusters
# 1 kmeans 4
# 2 pam 4
# 3 clara 5
# 4 fanny 5
# 5 hclust 4
# 6 agnes 4
# 7 diana 4
差距统计,即拟合度度量
“差距统计”用于衡量聚类算法的拟合度,请参阅paper
对于固定数量的用户定义群集,我们可以将每个群集算法的差距统计信息与clusGap
包中的cluster
函数进行比较:
numbClusters = 5
library(cluster)
clusterFuncFixedK = c("kmeans", "pam", "clara", "fanny")
gapStatList <- do.call(rbind,lapply(clusterFuncFixedK,function(x) {
cat("Begin clustering for function:",x,"\n")
set.seed(42)
#For each clustering function compute gap statistic
gapStatBoot=clusGap(DF,FUNcluster=get(x),K.max=numbClusters)
gapStatVec= round(gapStatBoot$Tab[,"gap"],3)
gapStat_at_AllClusters = paste(gapStatVec,collapse=",")
gapStat_at_chosenCluster = gapStatVec[numbClusters]
#return gap statistic for each clustering function
cat("End clustering for function:",x,"\n\n\n")
resultDF = data.frame(clustFunc = x, gapStat_at_AllClusters = gapStat_at_AllClusters,gapStat_at_chosenCluster = gapStat_at_chosenCluster, stringsAsFactors=FALSE)
}))
# >gapStatList
# clustFunc gapStat_at_AllClusters gapStat_at_chosenCluster
#1 kmeans 0.184,0.235,0.264,0.233,0.27 0.270
#2 pam 0.181,0.253,0.274,0.307,0.303 0.303
#3 clara 0.181,0.253,0.276,0.311,0.315 0.315
#4 fanny 0.181,0.23,0.313,0.351,0.478 0.478
上表中每个算法的每个算法的间隙统计量从k = 1到5.第3列,gapStat_at_chosenCluster
具有
k = 5簇时的差距统计量。统计越低,分区越好,因此,在k = 5个簇时,kmeans
表现得更好
相对于USArrests
数据集