没有阶段在运行,但numRunningTasks!= 0

时间:2016-08-27 01:04:20

标签: apache-spark pyspark yarn distributed-computing bigdata

我的任务已经完成,我得到了计算RDD的预期结果。我正在运行一个交互式PySpark shell。我想了解这个警告意味着什么:

  

WARN ExecutorAllocationManager:没有正在运行的阶段,但是   numRunningTasks!= 0

来自Spark的内部code我发现了这个:

    // If this is the last stage with pending tasks, mark the scheduler queue as empty
    // This is needed in case the stage is aborted for any reason
    if (stageIdToNumTasks.isEmpty) {
      allocationManager.onSchedulerQueueEmpty()
      if (numRunningTasks != 0) {
        logWarning("No stages are running, but numRunningTasks != 0")
        numRunningTasks = 0
      }
    }

有人可以解释一下吗?

我说的是Id 0的任务。

enter image description here

我可以使用KMeans()报告使用Spark的MLlib体验此行为,其中the one of the two samples据说以较少的任务完成。我不确定这份工作是否会失败......

2  takeSample at KMeans.scala:355 2016/08/27 21:39:04   7 s 1/1 9600/9600
1  takeSample at KMeans.scala:355 2016/08/27 21:38:57   6 s 1/1 6608/9600

输入集为100m点,256维。

PySpark的一些参数:master是yarn,mode是cluster,

spark.dynamicAllocation.enabled             false
# Better serializer - https://spark.apache.org/docs/latest/tuning.html#data-serialization
spark.serializer                            org.apache.spark.serializer.KryoSerializer
spark.kryoserializer.buffer.max             2000m

# Bigger PermGen space, use 4 byte pointers (since we have < 32GB of memory)
spark.executor.extraJavaOptions             -XX:MaxPermSize=512m -XX:+UseCompressedOops

# More memory overhead
spark.yarn.executor.memoryOverhead          4096
spark.yarn.driver.memoryOverhead            8192

spark.executor.cores                        8
spark.executor.memory                       8G

spark.driver.cores                          8
spark.driver.memory                         8G
spark.driver.maxResultSize                  4G

1 个答案:

答案 0 :(得分:2)

我们得到的是这段代码:

    ...
    // If this is the last stage with pending tasks, mark the scheduler queue as empty
    // This is needed in case the stage is aborted for any reason
    if (stageIdToNumTasks.isEmpty) {
      allocationManager.onSchedulerQueueEmpty()
      if (numRunningTasks != 0) {
        logWarning("No stages are running, but numRunningTasks != 0")
        numRunningTasks = 0
      }
    }
  }
}

来自Spark的GitHub,评论是目前为止最好的解释。