如何在从Spark消费Kafka时获取偏移id,将其保存在Cassandra中并用它来重启Kafka?

时间:2016-08-26 13:40:54

标签: java apache-spark cassandra apache-kafka

我使用Spark来消耗Kafka的数据并将其保存在Cassandra中。我的程序是用Java编写的。我正在使用spark-streaming-kafka_2.10:1.6.2 lib来完成此任务。我的代码是:

SparkConf sparkConf = new SparkConf().setAppName("name");
JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, new Duration(2000));
Map<String,String> kafkaParams = new HashMap<>();
kafkaParams.put("zookeeper.connect", "127.0.0.1");
kafkaParams.put("group.id", App.GROUP);
JavaPairReceiverInputDStream<String, EventLog> messages =
  KafkaUtils.createStream(jssc, String.class, EventLog.class, StringDecoder.class, EventLogDecoder.class,
    kafkaParams, topicMap, StorageLevel.MEMORY_AND_DISK_SER_2());
JavaDStream<EventLog> lines = messages.map(new Function<Tuple2<String, EventLog>, EventLog>() {
    @Override
    public EventLog call(Tuple2<String, EventLog> tuple2) {
        return tuple2._2();
    }
});
lines.foreachRDD(rdd -> {
    javaFunctions(rdd).writerBuilder("test", "event_log", mapToRow(EventLog.class)).saveToCassandra();
});
jssc.start();

在我的Cassandra表event_log中,有一个名为offsetid的列用于存储流的偏移ID。如何获取偏移ID,直到该流读取Kafka流并将其存储在Cassandra中?

在Cassandra中保存之后,我想使用Spark再次启动时使用的最新偏移ID。我该怎么做?

2 个答案:

答案 0 :(得分:3)

因此,您希望自己管理kafka偏移量。

为此:

  1. 使用createDirectStream而不是createStream。这将允许您指定您想要阅读的偏移量(fromOffsets: Map[TopicAndPartition, Long]

  2. 收集有关您已处理的偏移的信息。这可以通过为每条消息保存偏移量来完成,也可以将这些信息聚合在单独的表中。要获得偏移范围,请使用rdd:rdd.asInstanceOf[HasOffsetRanges].offsetRanges。对于java(根据文档)http://spark.apache.org/docs/latest/streaming-kafka-integration.html OffsetRange[] offsets = ((HasOffsetRanges) rdd.rdd()).offsetRanges();

答案 1 :(得分:3)

以下是您可能需要根据您的要求更改内容的参考代码。我在代码和方法上所做的就是为Cassandra中的每个主题维护Kafka分区智能偏移(这可以在zookeeper中完成,也可以作为使用其java api的建议)。在EventLog表中存储或更新收到的每个字符串消息的主题的最新偏移范围。所以总是从表中检索并查看是否存在,然后从该偏移量创建直接流,否则直接流新鲜。

package com.spark;

import static com.datastax.spark.connector.japi.CassandraJavaUtil.javaFunctions;
import static com.datastax.spark.connector.japi.CassandraJavaUtil.mapRowTo;

import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;

import kafka.common.TopicAndPartition;
import kafka.message.MessageAndMetadata;
import kafka.serializer.StringDecoder;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.HasOffsetRanges;
import org.apache.spark.streaming.kafka.KafkaUtils;
import org.apache.spark.streaming.kafka.OffsetRange;

import scala.Tuple2;

public class KafkaChannelFetchOffset {
    public static void main(String[] args) {
        String topicName = "topicName";
        SparkConf sparkConf = new SparkConf().setAppName("name");
        JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, new Duration(2000));
        HashSet<String> topicsSet = new HashSet<String>(Arrays.asList(topicName));
        HashMap<TopicAndPartition, Long> kafkaTopicPartition = new HashMap<TopicAndPartition, Long>();
        Map<String, String> kafkaParams = new HashMap<>();
        kafkaParams.put("zookeeper.connect", "127.0.0.1");
        kafkaParams.put("group.id", "GROUP");
        kafkaParams.put("metadata.broker.list", "127.0.0.1");
        List<EventLog> eventLogList = javaFunctions(jssc).cassandraTable("test", "event_log", mapRowTo(EventLog.class))
                .select("topicName", "partion", "fromOffset", "untilOffset").where("topicName=?", topicName).collect();
        JavaDStream<String> kafkaOutStream = null;
        if (eventLogList == null || eventLogList.isEmpty()) {
            kafkaOutStream = KafkaUtils.createDirectStream(jssc, String.class, String.class, StringDecoder.class, StringDecoder.class, kafkaParams,
                    topicsSet).transform(new Function<JavaPairRDD<String, String>, JavaRDD<String>>() {
                @Override
                public JavaRDD<String> call(JavaPairRDD<String, String> pairRdd) throws Exception {
                    JavaRDD<String> rdd = pairRdd.map(new Function<Tuple2<String, String>, String>() {
                        @Override
                        public String call(Tuple2<String, String> arg0) throws Exception {
                            return arg0._2;
                        }
                    });
                    writeOffset(rdd, ((HasOffsetRanges) rdd.rdd()).offsetRanges());
                    return rdd;
                }
            });
        } else {
            for (EventLog eventLog : eventLogList) {
                kafkaTopicPartition.put(new TopicAndPartition(topicName, Integer.parseInt(eventLog.getPartition())),
                        Long.parseLong(eventLog.getUntilOffset()));
            }
            kafkaOutStream = KafkaUtils.createDirectStream(jssc, String.class, String.class, StringDecoder.class, StringDecoder.class, String.class,
                    kafkaParams, kafkaTopicPartition, new Function<MessageAndMetadata<String, String>, String>() {
                        @Override
                        public String call(MessageAndMetadata<String, String> arg0) throws Exception {
                            return arg0.message();
                        }
                    }).transform(new Function<JavaRDD<String>, JavaRDD<String>>() {

                @Override
                public JavaRDD<String> call(JavaRDD<String> rdd) throws Exception {
                    writeOffset(rdd, ((HasOffsetRanges) rdd.rdd()).offsetRanges());
                    return rdd;
                }
            });
        }
        // Use kafkaOutStream for further processing.
        jssc.start();
    }

    private static void writeOffset(JavaRDD<String> rdd, final OffsetRange[] offsets) {
        for (OffsetRange offsetRange : offsets) {
            EventLog eventLog = new EventLog();
            eventLog.setTopicName(String.valueOf(offsetRange.topic()));
            eventLog.setPartition(String.valueOf(offsetRange.partition()));
            eventLog.setFromOffset(String.valueOf(offsetRange.fromOffset()));
            eventLog.setUntilOffset(String.valueOf(offsetRange.untilOffset()));
            javaFunctions(rdd).writerBuilder("test", "event_log", null).saveToCassandra();
        }
    }
}

希望这有助于解决您的问题...