GraphLab Create Launcher安装错误

时间:2016-08-26 04:10:58

标签: python windows git anaconda graphlab

为什么要创建“gl-env”? 我也试过重新安装它......但没有任何帮助我。

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

def weight_varible(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')


mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
print("Download Done!")

sess = tf.InteractiveSession()

# paras
W_conv1 = weight_varible([3, 3, 1, 32])
b_conv1 = bias_variable([32])

# conv layer-1
x = tf.placeholder(tf.float32, [None, 784])
x_image = tf.reshape(x, [-1, 28, 28, 1])

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

# conv layer-2
W_conv2 = weight_varible([3, 3, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

# full connection
W_fc1 = weight_varible([7 * 7 * 64, 1204])
b_fc1 = bias_variable([1204])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

# dropout
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# output layer: softmax
W_fc2 = weight_varible([1204, 10])
b_fc2 = bias_variable([10])

y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
y_ = tf.placeholder(tf.float32, [None, 10])

# model training
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

correct_prediction = tf.equal(tf.arg_max(y_conv, 1), tf.arg_max(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

saver = tf.train.Saver()
sess.run(tf.initialize_all_variables())
for i in range(100000):
    batch = mnist.train.next_batch(100)

    if i % 10 == 0:
        train_accuacy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
        train_cross_entropy = cross_entropy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
        print("step %d, training accuracy %g, loss %g"%(i, train_accuacy, train_cross_entropy))
    train_step.run(feed_dict = {x: batch[0], y_: batch[1], keep_prob: 0.5})

# accuacy on test
save_path = saver.save(sess, "./mnist.model")
#saver.restore(sess,"./mnist.model")
print("Model saved in file: %s" % save_path)
print("test accuracy %g"%(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})))

1 个答案:

答案 0 :(得分:1)

遇到同样的问题。在别处读取是因为PATH变量太长。我从PATH变量中删除了所有可能的东西,但这不是解决方案。