我正在尝试解决Project Euler问题#50(https://projecteuler.net/problem=50),问题定义为:
低于一百万的素数可以写成最多的总和 连续素数?
我想出了两个不同的解决方案都给出了相同的错误答案,这让我相信错误发生在我构建我的素数列表时,但是,我似乎找不到任何错误。我的解决方案似乎也适用于N = 10
和N = 100
,但不适用于N = 1000
。任何帮助表示赞赏。
解决方案1 :(输出= 958577)
require 'Prime'
# Initialising primes
N = 1_000_000
primes = {}
(2..N).each do |i|
primes[i] = true
end
i = 2
while i * i <= N
if primes[i]
j = i
while i * j <= N
primes[i * j] = false
j += 1
end
end
i += 1
end
# New prime list where total sum is less than N
new_primes = []
i = 2
sum = 0
while sum + i < N
if primes[i]
new_primes << i
sum += i
end
i += 1
end
# Keep removing last prime from list until total sum is prime
while true
if Prime.prime?( new_primes.inject(0, :+) )
puts new_primes.inject(0, :+)
break
else
new_primes.delete_at(-1)
end
end
解决方案2 :(输出= 958577)
require 'Prime'
# Initialising primes
N = 1_000_000
primes = {}
(2..N).each do |i|
primes[i] = true
end
i = 2
while i * i <= N
if primes[i]
j = i
while i * j <= N
primes[i * j] = false
j += 1
end
end
i += 1
end
sum = 0
max = 0
i = 2
while i < N
if primes[i]
sum += i
if sum < N && Prime.prime?(sum)
max = sum
end
end
i += 1
end
puts max
答案 0 :(得分:1)
(w.r.t to Solution 2)你找到素数的方法似乎是正确的。问题在于你的逻辑。如果小于N
的素数为p_1,p_2,..,p_k
,那么您只是在考虑
只有总和p_1
,p_1+p_2
,p_1+p_2+p_3
,...,p_1+p_2+..+p_k
。那些不是从p_1
开始的总和,比如p_3+p_4
。