我知道Randy在Sessonizing Log Data上有一篇很棒的帖子,但我正在努力调整基于30分钟不活动窗口生成会话ID的想法。
以下是我希望在R
中生成的内容,最好是dplyr
。我想要计算下面显示的session_id
变量。
dim_user_id activity_date session_id
1 2665871 2014-12-31 19:00:08 1
2 2665871 2014-12-31 19:00:45 1
3 2665871 2014-12-31 19:01:01 1
4 2665877 2014-12-31 19:00:08 2
5 2665877 2014-12-31 19:00:33 2
6 2666612 2014-12-31 19:08:19 3
7 2666612 2014-12-31 19:08:32 3
8 2666612 2014-12-31 19:09:04 3
9 2666626 2014-12-31 19:00:25 4
10 2666627 2014-12-31 19:04:39 5
我尝试使用的代码是:
user_activity$sid = 1:nrow(user_activity)
user_activity$session_id = NA
# startTime = Sys.time()
user_activity = user_activity %>%
group_by(dim_user_id) %>%
arrange(activity_date) %>%
transform(lag_seconds = ifelse(lag(dim_user_id) == dim_user_id,
as.numeric(activity_date - lag(activity_date)),
9999)) %>%
mutate(session_id = ifelse(is.na(lag_seconds) | lag_seconds >= 1801, sid, lag(session_id)))
但我遇到的问题是我不相信这个值是按行设置的。我确实在rowwwise
中探索了dplyr
函数,但我被卡住了。
提前致谢。
答案 0 :(得分:2)
如果我理解正确,您正在寻找可以使用的group_indices
,如下所示:
df %>% mutate(session_id = group_indices_(df, .dots="dim_user_id"))
编辑: 由于您的示例数据未提供一个用户具有多个30+时间差异的会话的情况,因此我使用了此更改的数据集:
df <- read.table(header=TRUE, text="dim_user_id date time
2665871 2014-12-31 19:00:08
2665871 2014-12-31 19:00:45
2665871 2014-12-31 19:01:01
2665877 2014-12-31 19:00:08
2665877 2014-12-31 19:00:33
2666612 2014-12-31 19:08:19
2666612 2014-12-31 19:38:32
2666612 2014-12-31 19:39:04
2666626 2014-12-31 19:00:25
2666627 2014-12-31 19:04:39")
df$activity_date <- as.POSIXct(paste(df$date, df$time))
df$date <- NULL
df$time <- NULL
因此用户#2666612的延迟时间为30+。以下代码逐步计算您的session_id。我相信它可以缩短,但这只是为了澄清。
require(dplyr)
cuttoff <- 30*60 # 30 min times 60 seconds.
df %>%
# group by user_id
group_by(dim_user_id) %>%
# Difference in seconds within a given user
mutate(time_diff = c(0, diff(activity_date))) %>%
# If the difference is >cutoff start new session
mutate(session_num = cumsum(time_diff>cuttoff)) %>%
# ungroup to set group_indices data-wide instead of groupwide
ungroup() %>%
# calculate group_indices based in user_id and session_num
mutate(session_id = group_indices_(., .dots=c("dim_user_id", "session_num")))
结果是:
Source: local data frame [10 x 5]
dim_user_id activity_date time_diff session_num session_id
(int) (time) (dbl) (int) (int)
1 2665871 2014-12-31 19:00:08 0 0 1
2 2665871 2014-12-31 19:00:45 37 0 1
3 2665871 2014-12-31 19:01:01 16 0 1
4 2665877 2014-12-31 19:00:08 0 0 2
5 2665877 2014-12-31 19:00:33 25 0 2
6 2666612 2014-12-31 19:08:19 0 0 3
7 2666612 2014-12-31 19:38:32 1813 1 4
8 2666612 2014-12-31 19:39:04 32 1 4
9 2666626 2014-12-31 19:00:25 0 0 5
10 2666627 2014-12-31 19:04:39 0 0 6