有人可以解释为什么我的情节显然会用第二行覆盖第一行吗?这些价值绝不相同。
per.acc<-c(0.508407842930696, 0.508407842930696, 0.508776550216615, 0.508895063272804,
0.509619309727288, 0.51039622865119, 0.510712263467692, 0.511871057794867,
0.512252933198141, 0.513280046351773, 0.514122805862446, 0.514478345031011,
0.514768043612805, 0.515676643710249, 0.516084855348231, 0.51682226992007,
0.517757206252222, 0.519008177400877, 0.519890441263613, 0.520680528304868,
0.521286261703164, 0.522181693683254, 0.523024453193927, 0.524222751873165,
0.524420273633479, 0.524986502679712, 0.525631740430071, 0.52609262453747,
0.526777366639891, 0.52733042756877, 0.52788348849765, 0.528278532018277,
0.528673575538905, 0.529661184340475, 0.530569784437919, 0.531109677249444,
0.530833146785004, 0.531425712065946, 0.531280862775049, 0.53063562502469,
0.531465216418009, 0.531215022188278, 0.531188685953569, 0.53153105700478,
0.53180758746922, 0.532110454168368, 0.532005109229533, 0.532070949816305,
0.53233431216339, 0.532189462872493, 0.532307975928682, 0.532321144046036,
0.531741746882448, 0.531504720770071, 0.530214245269354, 0.529661184340475,
0.529002778472762, 0.529845537983434, 0.53054344820321, 0.529108123411596,
0.528186355196797, 0.527896656615004, 0.526830039109309, 0.526263810063075,
0.525091847618546, 0.524354433046707, 0.523538009770743, 0.522655745908008,
0.522036844392357, 0.520812209478411, 0.519640247033882, 0.518520957058769,
0.517335826496886, 0.515531794419352, 0.514715371143388, 0.51314836517823,
0.511831553442804, 0.510975625814777, 0.510040689482625, 0.508118144348902,
0.507104199312624, 0.505813723811907, 0.505168486061548, 0.504312558433521,
0.503311781514597, 0.502284668360964, 0.501297059559395, 0.500546476870202,
0.500072424645448, 0.499018975257107, 0.497886517164641, 0.496964748949843,
0.495516256040874, 0.494120435601322, 0.493383021029483, 0.492803623865896,
0.492421748462622, 0.492118881763474, 0.492026704941994, 0.491684333890784
)
num.pred<-c(38609L, 38609L, 38637L, 38646L, 38701L, 38760L, 38784L, 38872L,
38901L, 38979L, 39043L, 39070L, 39092L, 39161L, 39192L, 39248L,
39319L, 39414L, 39481L, 39541L, 39587L, 39655L, 39719L, 39810L,
39825L, 39868L, 39917L, 39952L, 40004L, 40046L, 40088L, 40118L,
40148L, 40223L, 40292L, 40333L, 40312L, 40357L, 40346L, 40297L,
40360L, 40341L, 40339L, 40365L, 40386L, 40409L, 40401L, 40406L,
40426L, 40415L, 40424L, 40425L, 40381L, 40363L, 40265L, 40223L,
40173L, 40237L, 40290L, 40181L, 40111L, 40089L, 40008L, 39965L,
39876L, 39820L, 39758L, 39691L, 39644L, 39551L, 39462L, 39377L,
39287L, 39150L, 39088L, 38969L, 38869L, 38804L, 38733L, 38587L,
38510L, 38412L, 38363L, 38298L, 38222L, 38144L, 38069L, 38012L,
37976L, 37896L, 37810L, 37740L, 37630L, 37524L, 37468L, 37424L,
37395L, 37372L, 37365L, 37339L)
plot(x=1:100,y=per.acc, main="RSI predicting trend",ylab=NA,xlab="RSI cutoff value",col="blue",type="p")
par(new=T)
plot(x=1:100,y=num.pred,axes=F,xlab=NA,main=NA,ylab=NA,col="red",type="p")
axis(side=4)