有谁知道如何摆脱黑色' y'在Matplotlib图中左边的轴?

时间:2016-08-20 19:13:15

标签: python python-2.7 matplotlib

移动我所有的' y'轴到子图我得到一个不需要的轴。它是左边的黑色。有谁知道怎么摆脱它?当我打电话给这个人物时,我确定它会被绘制,但是我不知道如何摆脱它。

enter image description here

def mpl_plot(self, plot_page, replot = 0):  #Data stored in lists  


    if plot_page == 1:             #Plot 1st Page                        
        #plt0 = self.mplwidget.axes                                
        fig = self.mplwidget.figure #Add a figure            


    if plot_page == 2:          #Plot 2nd Page
        #plt0 = self.mplwidget_2.axes 
        fig = self.mplwidget_2.figure    #Add a figure


    if plot_page == 3:           #Plot 3rd Page
        #plt0 = self.mplwidget_3.axes 
        fig = self.mplwidget_3.figure    #Add a figure   

    #Clears Figure if data is roplotted

    if replot == 1:
        fig.clf()

    par0 = fig.add_subplot(111)
    par1 = fig.add_subplot(111)
    par2 = fig.add_subplot(111)

    #Add Axes
    plt = par0.twinx()
    ax1 = par1.twinx()        
    ax2 = par2.twinx() 

    impeller = str(self.comboBox_impellers.currentText())  #Get Impeller
    fac_curves = self.mpl_factory_specs(impeller)    
    fac_lift = fac_curves[0]        
    fac_power = fac_curves[1]
    fac_flow = fac_curves[2]
    fac_eff = fac_curves[3]        
    fac_max_eff = fac_curves[4]
    fac_max_eff_bpd = fac_curves[5]
    fac_ranges = self.mpl_factory_ranges()
    min_range = fac_ranges[0]
    max_range = fac_ranges[1]

    #Plot Chart
    plt.hold(True)    
    plt.plot(fac_flow, fac_lift, 'b', linestyle = "dashed", linewidth = 1)        

    ax1.plot(fac_flow, fac_power, 'r', linestyle = "dashed", linewidth = 1)

    ax2.plot(fac_flow, fac_eff, 'g', linestyle = "dashed", linewidth = 1)

    #Move spines    

    ax2.spines["right"].set_position(("outward", 25))
    self.make_patch_spines_invisible(ax2)
    ax2.spines["right"].set_visible(True)  
    #Plot x axis minor tick marks
    minorLocatorx = AutoMinorLocator()        
    ax1.xaxis.set_minor_locator(minorLocatorx)
    ax1.tick_params(which='both', width= 0.5)
    ax1.tick_params(which='major', length=7)
    ax1.tick_params(which='minor', length=4, color='k')

    #Plot y axis minor tick marks
    minorLocatory = AutoMinorLocator()
    plt.yaxis.set_minor_locator(minorLocatory)
    plt.tick_params(which='both', width= 0.5)
    plt.tick_params(which='major', length=7)
    plt.tick_params(which='minor', length=4, color='k')

    #Make Border of Chart White
    fig.set_facecolor('white')        
    #Plot Grid        

    plt.grid(b=True, which='both', color='k', linestyle='-') 

    #set shaded Area 
    plt.axvspan(min_range, max_range, facecolor='#9BE2FA', alpha=0.5)    #Yellow rectangular shaded area

    #Set Vertical Lines
    plt.axvline(fac_max_eff_bpd, color = '#69767A')

    #BEP MARKER   *** Can change marker style if needed
    bep = fac_max_eff * 0.90     #bep is 90% of maximum efficiency point

    bep_corrected = bep * 0.90   # We knock off another 10% to place the arrow correctly on chart

    ax2.annotate('BEP', xy=(fac_max_eff_bpd, bep_corrected), xycoords='data',   #Subtract 2.5 shows up correctly on chart
            xytext=(-50, 30), textcoords='offset points',
            bbox=dict(boxstyle="round", fc="0.8"),
            arrowprops=dict(arrowstyle="-|>",
                            shrinkA=0, shrinkB=10,
                            connectionstyle="angle,angleA=0,angleB=90,rad=10"),
                    )
    #Set Scales         

    plt.set_ylim(0,max(fac_lift) + (max(fac_lift) * 0.40))    #Pressure 
    #plt.set_xlim(0,max(fac_flow))

    ax1.set_ylim(0,max(fac_power) + (max(fac_power) * 0.40))     #Power
    ax2.set_ylim(0,max(fac_eff) + (max(fac_eff) * 0.40))    #Effiency

    plt.yaxis.tick_left()
    # Set Axes Colors

    plt.tick_params(axis='y', colors='b')
    ax1.tick_params(axis='y', colors='r')
    ax2.tick_params(axis='y', colors='g')

    # Set Chart Labels        
    plt.yaxis.set_label_position("left")
    plt.set_xlabel("BPD")
    plt.set_ylabel("Feet" , color = 'b')

    #ax1.set_ylabel("BHP", color = 'r')
    #ax1.set_ylabel("Effiency", color = 'g')

    # Set tight layout       
    fig.set_tight_layout        

    # Since we moved Feet Axis to subplot, extra unneeded axis was created. This Removes it


    # Refresh
    fig.canvas.update()
    fig.canvas.draw()  

1 个答案:

答案 0 :(得分:0)

看起来你有三个y轴,参考你想要不显示的那个,你可以尝试添加:

ax.yaxis.set_tick_params(labelsize=0, length=0, which='major')

只是让标签和刻度变得不可见。我想你想要消失吗?