我有一个大的csv文件,我用pd.read_csv打开它,如下所示:
df = pd.read_csv(path//fileName.csv, sep = ' ', header = None)
由于文件非常大,我希望能够在行中打开它
from 0 to 511
from 512 to 1023
from 1024 to 1535
...
from 512*n to 512*(n+1) - 1
其中n = 1,2,3 ......
如果我将chunksize = 512添加到read_csv
的参数中df = pd.read_csv(path//fileName.csv, sep = ' ', header = None, chunksize = 512)
然后输入
df.get_chunk(5)
我可以打开从0到5的行,或者我可以使用for循环将文件分成512行的部分
data = []
for chunks in df:
data = data + [chunk]
但是这很无用,因为文件必须完全打开并且需要时间。如何只读取512 * n到512 *(n + 1)的行。
环顾四周,我经常看到" chunksize"与" iterator"一起使用如下:
df = pd.read_csv(path//fileName.csv, sep = ' ', header = None, iterator = True, chunksize = 512)
但经过多次尝试后,我仍然不明白哪些好处为我提供了这个布尔变量。你可以解释一下吗?
答案 0 :(得分:14)
如何只读取512 * n到512 *(n + 1)的行?
df = pd.read_csv(fn, header=None, skiprows=512*n, nrows=512)
你可以这样做(而且它非常有用):
for chunk in pd.read_csv(f, sep = ' ', header = None, chunksize = 512):
# process your chunk here
演示:
In [61]: fn = 'd:/temp/a.csv'
In [62]: pd.DataFrame(np.random.randn(30, 3), columns=list('abc')).to_csv(fn, index=False)
In [63]: for chunk in pd.read_csv(fn, chunksize=10):
....: print(chunk)
....:
a b c
0 2.229657 -1.040086 1.295774
1 0.358098 -1.080557 -0.396338
2 0.731741 -0.690453 0.126648
3 -0.009388 -1.549381 0.913128
4 -0.256654 -0.073549 -0.171606
5 0.849934 0.305337 2.360101
6 -1.472184 0.641512 -1.301492
7 -2.302152 0.417787 0.485958
8 0.492314 0.603309 0.890524
9 -0.730400 0.835873 1.313114
a b c
0 1.393865 -1.115267 1.194747
1 3.038719 -0.343875 -1.410834
2 -1.510598 0.664154 -0.996762
3 -0.528211 1.269363 0.506728
4 0.043785 -0.786499 -1.073502
5 1.096647 -1.127002 0.918172
6 -0.792251 -0.652996 -1.000921
7 1.582166 -0.819374 0.247077
8 -1.022418 -0.577469 0.097406
9 -0.274233 -0.244890 -0.352108
a b c
0 -0.317418 0.774854 -0.203939
1 0.205443 0.820302 -2.637387
2 0.332696 -0.655431 -0.089120
3 -0.884916 0.274854 1.074991
4 0.412295 -1.561943 -0.850376
5 -1.933529 -1.346236 -1.789500
6 1.652446 -0.800644 -0.126594
7 0.520916 -0.825257 -0.475727
8 -2.261692 2.827894 -0.439698
9 -0.424714 1.862145 1.103926
在哪种情况下"迭代器"可能有用吗?
使用chunksize
时 - 所有块的长度都相同。使用iterator
参数,您可以定义每次迭代中要读取的数据量(get_chunk(nrows)
):
In [66]: reader = pd.read_csv(fn, iterator=True)
让我们先阅读3行
In [67]: reader.get_chunk(3)
Out[67]:
a b c
0 2.229657 -1.040086 1.295774
1 0.358098 -1.080557 -0.396338
2 0.731741 -0.690453 0.126648
现在我们将阅读接下来的5行:
In [68]: reader.get_chunk(5)
Out[68]:
a b c
0 -0.009388 -1.549381 0.913128
1 -0.256654 -0.073549 -0.171606
2 0.849934 0.305337 2.360101
3 -1.472184 0.641512 -1.301492
4 -2.302152 0.417787 0.485958
接下来的7行:
In [69]: reader.get_chunk(7)
Out[69]:
a b c
0 0.492314 0.603309 0.890524
1 -0.730400 0.835873 1.313114
2 1.393865 -1.115267 1.194747
3 3.038719 -0.343875 -1.410834
4 -1.510598 0.664154 -0.996762
5 -0.528211 1.269363 0.506728
6 0.043785 -0.786499 -1.073502