我有一个长格式数据框,有相同日期和人的多个条目。
jj <- data.frame(month=rep(1:3,4),
student=rep(c("Amy", "Bob"), each=6),
A=c(9, 7, 6, 8, 6, 9, 3, 2, 1, 5, 6, 5),
B=c(6, 7, 8, 5, 6, 7, 5, 4, 6, 3, 1, 5))
我想将其转换为宽格式并使其像这样:
month Amy.A Bob.A Amy.B Bob.B
1
2
3
1
2
3
1
2
3
1
2
3
我的问题与this非常相似。我在答案中使用了给定的代码:
kk <- jj %>%
gather(variable, value, -(month:student)) %>%
unite(temp, student, variable) %>%
spread(temp, value)
但它会出现以下错误:
错误:行(1,4),(2,5),(3,6),(13,16),(14,17),(15,18),(7,10)的重复标识符,(8,11),(9,12),(19,22),(20,23),(21,24)
提前致谢。 注意:我不想删除多个条目。
答案 0 :(得分:27)
你的回答是缺少mutate id!以下是仅使用dplyr packge的解决方案。
jj %>%
gather(variable, value, -(month:student)) %>%
unite(temp, student, variable) %>%
group_by(temp) %>%
mutate(id=1:n()) %>%
spread(temp, value)
# A tibble: 6 x 6
# month id Amy_A Amy_B Bob_A Bob_B
# * <int> <int> <dbl> <dbl> <dbl> <dbl>
# 1 1 1 9 6 3 5
# 2 1 4 8 5 5 3
# 3 2 2 7 7 2 4
# 4 2 5 6 6 6 1
# 5 3 3 6 8 1 6
# 6 3 6 9 7 5 5
答案 1 :(得分:20)
问题是A
和B
的两列。如果我们可以创建一个值列,我们可以按您的意愿传播数据。使用下面的代码时,请查看jj_melt
的输出。
library(reshape2)
jj_melt <- melt(jj, id=c("month", "student"))
jj_spread <- dcast(jj_melt, month ~ student + variable, value.var="value", fun=sum)
# month Amy_A Amy_B Bob_A Bob_B
# 1 1 17 11 8 8
# 2 2 13 13 8 5
# 3 3 15 15 6 11
我不会将此标记为重复,因为sum
未对其他问题进行总结,但data.table
答案可能有助于另外一个参数fun=sum
:< / p>
library(data.table)
dcast(setDT(jj), month ~ student, value.var=c("A", "B"), fun=sum)
# month A_sum_Amy A_sum_Bob B_sum_Amy B_sum_Bob
# 1: 1 17 8 11 8
# 2: 2 13 8 13 5
# 3: 3 15 6 15 11
如果您想使用tidyr
解决方案,请将其与dcast
结合使用,按sum
进行汇总。
as.data.frame(jj)
library(tidyr)
jj %>%
gather(variable, value, -(month:student)) %>%
unite(temp, student, variable) %>%
dcast(month ~ temp, fun=sum)
# month Amy_A Amy_B Bob_A Bob_B
# 1 1 17 11 8 8
# 2 2 13 13 8 5
# 3 3 15 15 6 11
修改强>
根据您的新要求,我添加了一个活动列。
library(dplyr)
jj %>% group_by(month, student) %>%
mutate(id=1:n()) %>%
melt(id=c("month", "id", "student")) %>%
dcast(... ~ student + variable, value.var="value")
# month id Amy_A Amy_B Bob_A Bob_B
# 1 1 1 9 6 3 5
# 2 1 2 8 5 5 3
# 3 2 1 7 7 2 4
# 4 2 2 6 6 6 1
# 5 3 1 6 8 1 6
# 6 3 2 9 7 5 5
也可以使用其他解决方案。这里我添加了一个可选表达式来按活动编号排列最终输出:
library(tidyr)
jj %>%
gather(variable, value, -(month:student)) %>%
unite(temp, student, variable) %>%
group_by(temp) %>%
mutate(id=1:n()) %>%
dcast(... ~ temp) %>%
arrange(id)
# month id Amy_A Amy_B Bob_A Bob_B
# 1 1 1 9 6 3 5
# 2 2 2 7 7 2 4
# 3 3 3 6 8 1 6
# 4 1 4 8 5 5 3
# 5 2 5 6 6 6 1
# 6 3 6 9 7 5 5
data.table
语法是紧凑的,因为它允许多个value.var
列,并将为我们处理传播。然后我们可以跳过melt -> cast
进程。
library(data.table)
setDT(jj)[, activityID := rowid(student)]
dcast(jj, ... ~ student, value.var=c("A", "B"))
# month activityID A_Amy A_Bob B_Amy B_Bob
# 1: 1 1 9 3 6 5
# 2: 1 4 8 5 5 3
# 3: 2 2 7 2 7 4
# 4: 2 5 6 6 6 1
# 5: 3 3 6 1 8 6
# 6: 3 6 9 5 7 5
答案 2 :(得分:0)
由于 tidyr 1.0.0 pivot_wider
是spread
的推荐替代品,因此您可以执行以下操作:
jj <- data.frame(month=rep(1:3,4),
student=rep(c("Amy", "Bob"), each=6),
A=c(9, 7, 6, 8, 6, 9, 3, 2, 1, 5, 6, 5),
B=c(6, 7, 8, 5, 6, 7, 5, 4, 6, 3, 1, 5))
library(tidyr)
pivot_wider(
jj,
names_from = "student",
values_from = c("A","B"),
names_sep = ".",
values_fn = list(A= list, B= list)) %>%
unchop(everything())
#> # A tibble: 6 x 5
#> month A.Amy A.Bob B.Amy B.Bob
#> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 1 9 3 6 5
#> 2 1 8 5 5 3
#> 3 2 7 2 7 4
#> 4 2 6 6 6 1
#> 5 3 6 1 8 6
#> 6 3 9 5 7 5
由reprex package(v0.3.0)于2019-09-14创建
这个问题的转折点在于学生不是每个月都可以解决这个问题:
values_fn = list(A= list, B= list))
将多个值放在列表中unchop(everything())
垂直嵌套列表,您也可以在此处使用unnest
答案 3 :(得分:0)
如果我们创建唯一的序列,则可以使用pivot_wider
library(dplyr)
library(tidyr)
jj %>%
group_by(month, student) %>%
mutate(rn = row_number()) %>%
pivot_wider(names_from = 'student', values_from = c('A', 'B'),
names_sep='.') %>%
select(-rn)
# A tibble: 6 x 5
# Groups: month [3]
# month A.Amy A.Bob B.Amy B.Bob
# <int> <dbl> <dbl> <dbl> <dbl>
#1 1 9 3 6 5
#2 2 7 2 7 4
#3 3 6 1 8 6
#4 1 8 5 5 3
#5 2 6 6 6 1
#6 3 9 5 7 5
jj <- structure(list(month = c(1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L,
1L, 2L, 3L), student = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L), .Label = c("Amy", "Bob"), class = "factor"),
A = c(9, 7, 6, 8, 6, 9, 3, 2, 1, 5, 6, 5), B = c(6, 7, 8,
5, 6, 7, 5, 4, 6, 3, 1, 5)), class = "data.frame", row.names = c(NA,
-12L))
答案 4 :(得分:-1)
gather(data, key = "key", value = "value", ..., na.rm = FALSE,
convert = FALSE, factor_key = FALSE)
检查您是否反转了键和值。 “Key”是新密钥的名称,“value”是实际值。