我在pandas数据帧上使用了pandas.pivot_table
函数,我的输出看起来就像这样:
Winners Runnerup
year 2016 2015 2014 2016 2015 2014
Country Sport
india badminton
india wrestling
我真正需要的是下面的内容
Country Sport Winners_2016 Winners_2015 Winners_2014 Runnerup_2016 Runnerup_2015 Runnerup_2014
india badminton 1 1 1 1 1 1
india wrestling 1 0 1 0 1 0
我有很多专栏和年份,所以我无法手动编辑它们,所以任何人都可以告诉我如何做到这一点?
答案 0 :(得分:3)
您还可以使用列表理解:
df.columns = ['_'.join(col) for col in df.columns]
print (df)
Winners_2016 Winners_2015 Winners_2014 Runnerup_2016 \
Country Sport
india badminton 1 1 1 1
wrestling 1 1 1 1
Runnerup_2015 Runnerup_2014
Country Sport
india badminton 1 1
wrestling 1 1
使用转化columns
to_series
然后调用join
的另一种解决方案:
df.columns = df.columns.to_series().str.join('_')
print (df)
Winners_2016 Winners_2015 Winners_2014 Runnerup_2016 \
Country Sport
india badminton 1 1 1 1
wrestling 1 1 1 1
Runnerup_2015 Runnerup_2014
Country Sport
india badminton 1 1
wrestling 1 1
我对时间非常感兴趣:
In [45]: %timeit ['_'.join(col) for col in df.columns]
The slowest run took 7.82 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 4.05 µs per loop
In [44]: %timeit ['{}_{}'.format(x,y) for x,y in zip(df.columns.get_level_values(0),df.columns.get_level_values(1))]
The slowest run took 4.56 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 3: 131 µs per loop
In [46]: %timeit df.columns.to_series().str.join('_')
The slowest run took 4.31 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 3: 452 µs per loop
答案 1 :(得分:1)
试试这个:
df.columns=['{}_{}'.format(x,y) for x,y in zip(df.columns.get_level_values(0),df.columns.get_level_values(1))]
get_level_values
只需要获得所得多索引的一个级别。
附注:您可以尝试按原样处理数据。很长一段时间我真的很讨厌pandas multiIndex,但它在我身上长大了。