我的数据框如下:
mydf <- data.frame(Term = c('dog','cat','lion','tiger','pigeon','vulture'), Category = c('pet','pet','wild','wild','pet','wild'),
Count = c(12,14,19,7,11,10), Rate = c(0.4,0.7,0.3,0.6,0.1,0.8), Brand = c('GS','GS','MN','MN','PG','MN') )
导致数据框:
Term Category Count Rate Brand
1 dog pet 12 0.4 GS
2 cat pet 14 0.7 GS
3 lion wild 19 0.3 MN
4 tiger wild 7 0.6 MN
5 pigeon pet 11 0.1 PG
6 vulture wild 10 0.8 MN
我希望将此数据框转换为以下resultDF
Category pet wild
Term dog,cat,pigeon lion,tiger,vulture
Countlessthan13 dog,pigeon tiger,vulture
Ratemorethan0.5 cat tiger,vulture
Brand GS,PG MN
行标题表示像Countlessthan13这样的操作意味着Count&lt;将13应用于术语然后分组。 另请注意,品牌名称是独一无二的,并没有重新评估。
我尝试过dcast并融化......但没有得到理想的结果。
答案 0 :(得分:3)
我们可以使用data.table
执行此操作。将“data.frame”转换为“data.table”(setDT(mydf)
),按“类别”分组,按paste
{Term}的unique
值创建一些汇总列,其中“计数”小于13或“费率”大于0.5,以及paste
“品牌”的unique
元素。
library(data.table)
dt <- setDT(mydf)[, .(Term = paste(unique(Term), collapse=","),
Countlesstthan13 = paste(unique(Term[Count < 13]), collapse=","),
Ratemorethan0.5 = paste(unique(Term[Rate > 0.5]), collapse=","),
Brand = paste(unique(Brand), collapse=",")), by = Category]
从汇总数据集('dt'),我们melt
到'long'格式,将'id.var'指定为'Category',然后dcast
将其恢复为'wide'格式
dcast(melt(dt, id.var = "Category", variable.name = "category"),
category ~Category, value.var = "value")
# category pet wild
#1: Term dog,cat,pigeon lion,tiger,vulture
#2: Countlesstthan13 dog,pigeon tiger,vulture
#3: Ratemorethan0.5 cat tiger,vulture
#4: Brand GS,PG MN