我正在使用Python(2.7)以及Natural Language Toolkit(3.2.1)和WordNet。我非常新编程。
我正在尝试编写一个程序,询问用户一个单词,然后打印该单词的同义词集,然后询问用户要查看哪个同义词集。
问题是raw_input
只接受字符串,所以当我尝试在用户输入上使用方法.lemma_names()
时,我收到错误AttributeError: 'str' object has no attribute 'lemma_names'
。
以下是代码:
from nltk.corpus import wordnet as wn
w1 = raw_input ("What is the word? ")
#This prints the synsets for w1, thus showing them what format to use in the next question.
for synset in wn.synsets(w1):
print synset
#This asks the user to choose the synset of w1 that interests them.
synset1 = raw_input ("Which sense are you looking for? [Use same format as above]")
#This prints the lemmas from the synset of interest.
for x in synset1.lemma_names():
print x
我的问题是,如何将用户输入从字符串转换为synset类型,我可以使用.lemma_names()
方法?
如果这个问题非常基本,那么我很抱歉。如果是这样,请告诉我。
答案 0 :(得分:1)
试试这个:
from nltk.corpus import wordnet as wn
w1 = raw_input ("What is the word? ")
synset_dict = dict()
for synset in wn.synsets(w1):
name = synset.name()
synset_dict[name] = synset
print name
synset1 = raw_input ("Which sense are you looking for? [Use same format as above] ")
if synset1 in synset_dict:
synset = synset_dict[synset1]
for lemma in synset.lemma_names():
print lemma