我正在尝试使用pySpark实现Logistic回归 这是我的代码
from pyspark.mllib.classification import LogisticRegressionWithLBFGS
from time import time
from pyspark.mllib.regression import LabeledPoint
from numpy import array
RES_DIR="/home/shaahmed115/Pet_Projects/DA/TwitterStream_US_Elections/Features/"
sc= SparkContext('local','pyspark')
data_file = RES_DIR + "training.txt"
raw_data = sc.textFile(data_file)
print "Train data size is {}".format(raw_data.count())
test_data_file = RES_DIR + "testing.txt"
test_raw_data = sc.textFile(test_data_file)
print "Test data size is {}".format(test_raw_data.count())
def parse_interaction(line):
line_split = line.split(",")
return LabeledPoint(float(line_split[0]), array([float(x) for x in line_split]))
training_data = raw_data.map(parse_interaction)
logit_model = LogisticRegressionWithLBFGS.train(training_data,iterations=10, numClasses=3)
这是一个错误: 目前,ML包中使用ElasticNet的LogisticRegression仅支持二进制分类。在输入数据集中找到3
以下是我的数据集示例: 2,1.0,1.0,1.0 0,1.0,1.0,1.0 1,0.0,0.0,0.0
第一个元素是类,其余的是向量。你可以看到有三个类。 是否有可以使多项分类与此协同工作的解决方法?
答案 0 :(得分:1)
您看到的错误
ML包中使用ElasticNet的LogisticRegression仅支持二进制文件 分类
很清楚。您可以使用org.apache.spark.mllib.classification.LogisticRegression
版本来支持多项式:
/**
* Train a classification model for Multinomial/Binary Logistic Regression using
* Limited-memory BFGS. Standard feature scaling and L2 regularization are used by default.
* NOTE: Labels used in Logistic Regression should be {0, 1, ..., k - 1}
* for k classes multi-label classification problem.
*
* Earlier implementations of LogisticRegressionWithLBFGS applies a regularization
* penalty to all elements including the intercept. If this is called with one of
* standard updaters (L1Updater, or SquaredL2Updater) this is translated
* into a call to ml.LogisticRegression, otherwise this will use the existing mllib
* GeneralizedLinearAlgorithm trainer, resulting in a regularization penalty to the
* intercept.
*/
{{1}}