我有一个python脚本来训练Tensorflow模型,类似于CIFAR-10教程中的模型。我有20500个培训示例,每批使用128个示例。我将1,000,000设置为最大步数。然而,在大约164,000步之后,python脚本似乎卡在某处。有没有办法找出脚本卡在哪里?我的最后一招是使用Ctrl-C终止进程并强制它打印出回溯。但我想知道在我杀死这个过程之前是否还有其他事情需要检查。
这是火车循环:
def train(trainingData, batchSize, workingDir, maxSteps):
with tf.Graph().as_default():
global_step = tf.Variable(0, trainable=False)
image, label = readData(trainingData)
minAfterDequeue = 5000
capacity = minAfterDequeue + 3 * batchSize
imageBatch, labelBatch = tf.train.shuffle_batch([image, label], batch_size=batchSize, capacity=capacity, min_after_dequeue=minAfterDequeue)
#labelBatch = tf.reshape(labelBatch, [batchSize, 1])
#tf.image_summary('images', imageBatch)
#tf.histogram_summary('labels', tf.cast(labelBatch, tf.float32))
logits = network.inference(imageBatch, 0.5)
#floatLabel = tf.cast(labelBatch, tf.float32)
#cross_entropy_per_example = tf.nn.softmax_cross_entropy_with_logits(logits, floatLabel)
loss, cross_entropy = network.loss(logits, labelBatch)
train_op = network.train(loss, global_step, batchSize)
# Create a saver
saver = tf.train.Saver(tf.all_variables())
summary_op = tf.merge_all_summaries()
session = tf.Session()
init = tf.initialize_all_variables()
session.run(init)
tf.train.start_queue_runners(sess=session)
summary_writer = tf.train.SummaryWriter(workingDir, session.graph_def)
for step in xrange(maxSteps):
start_time = time.time()
#l, sm, ce = session.run([floatLabel, logits, cross_entropy_per_example])
#print l
#print sm
#print ce
_, loss_value = session.run([train_op, loss])
duration = time.time() - start_time
assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
if step % 10 == 0:
examples_per_sec = batchSize / duration
format_str = "%s: step %d, loss = %e (%.1f examples/sec; %.3f sec/batch"
print (format_str % (datetime.now(), step, loss_value, examples_per_sec, float(duration)))
if step % 100 == 0:
summary_str = session.run(summary_op)
summary_writer.add_summary(summary_str, step)
if step % 1000 == 0 or (step + 1) == maxSteps:
checkpoint_path = os.path.join(workingDir, 'model.ckpt')
saver.save(session, checkpoint_path, global_step = step)
以下是用于构建图表的各种函数:
import re
import tensorflow as tf
TOWER_NAME="tower"
NUM_EXAMPLES_PER_EPOCH = 50000
# Constants describing the training process.
MOVING_AVERAGE_DECAY = 0.9999 # The decay to use for the moving average.
NUM_EPOCHS_PER_DECAY = 350.0 # Epochs after which learning rate decays.
LEARNING_RATE_DECAY_FACTOR = 0.95 # Learning rate decay factor.
INITIAL_LEARNING_RATE = 0.01 # Initial learning rate.
def _activation_summary(x):
"""Helper to create summaries for activations.
Creates a summary that provides a histogram of activations.
Creates a summary that measure the sparsity of activations.
Args:
x: Tensor
Returns:
nothing
"""
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
# session. This helps the clarity of presentation on tensorboard.
tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
tf.histogram_summary(tensor_name + '/activations', x)
tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
#numChannel = tf.shape(x)[3]
#tf.image_summary(tensor_name + '/image', tf.reshape(x)
def _variable_on_cpu(name, shape, initializer):
"""Helper to create a Variable stored on CPU memory.
Args:
name: name of the variable
shape: list of ints
initializer: initializer for Variable
Returns:
Variable Tensor
"""
with tf.device('/cpu:0'):
var = tf.get_variable(name, shape, initializer=initializer, dtype=tf.float32)
return var
def _variable_with_weight_decay(name, shape, stddev, wd=None):
"""Helper to create an initialized Variable with weight decay.
Note that the Variable is initialized with a truncated normal distribution.
A weight decay is added only if one is specified.
Args:
name: name of the variable
shape: list of ints
stddev: standard deviation of a truncated Gaussian
wd: add L2Loss weight decay multiplied by this float. If None, weight
decay is not added for this Variable.
Returns:
Variable Tensor
"""
var = _variable_on_cpu(name, shape, tf.truncated_normal_initializer(stddev=stddev))
if wd is not None:
weight_decay = tf.mul(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var
def inference(images, dropout):
# conv1
with tf.variable_scope('conv1') as scope:
kernel = _variable_with_weight_decay('weights', shape=[5, 5, 1, 32], stddev=5e-2)
conv = tf.nn.conv2d(images, kernel, [1,1,1,1], padding='SAME')
biases = _variable_on_cpu('biases', [32], tf.constant_initializer(0.1))
bias = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(bias, name=scope.name)
_activation_summary(conv1)
# pool1
pool1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool1')
# conv2
with tf.variable_scope('conv2') as scope:
kernel = _variable_with_weight_decay('weights', shape=[3, 3, 32, 64], stddev=5e-2)
conv = tf.nn.conv2d(pool1, kernel, [1,1,1,1], padding='SAME')
biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1))
bias = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(bias, name=scope.name)
_activation_summary(conv2)
# pool2
pool2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool2')
# conv3
with tf.variable_scope('conv3') as scope:
kernel = _variable_with_weight_decay('weights', shape=[3, 3, 64, 64], stddev=5e-2)
conv = tf.nn.conv2d(pool2, kernel, [1,1,1,1], padding='SAME')
biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1))
bias = tf.nn.bias_add(conv, biases)
conv3 = tf.nn.relu(bias, name=scope.name)
_activation_summary(conv3)
# pool 3
pool3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool3')
# fully connected 4
with tf.variable_scope('full4') as scope:
batchSize = pool3.get_shape()[0].value
flattened = tf.reshape(pool3, [batchSize, -1])
dim = flattened.get_shape()[1].value
weights = _variable_with_weight_decay('weights', shape=[dim, 256], stddev=5e-2)
biases = _variable_on_cpu('biases', [256], tf.constant_initializer(0.1))
full4 = tf.nn.relu(tf.matmul(flattened, weights) + biases, name=scope.name)
full4_dropout = tf.nn.dropout(full4, dropout)
_activation_summary(full4)
#_activation_summary(full4_dropout)
# fully connected 5
with tf.variable_scope('full5') as scope:
weights = _variable_with_weight_decay('weights', [256, 128], stddev=5e-2)
biases = _variable_on_cpu('biases', [128], tf.constant_initializer(0.1))
full5 = tf.nn.relu(tf.matmul(full4_dropout, weights) + biases, name=scope.name)
full5_dropout = tf.nn.dropout(full5, dropout)
_activation_summary(full5)
#_activation_summary(full5_dropout)
# softmax
with tf.variable_scope('softmax_linear') as scope:
weights = _variable_with_weight_decay('weights', [128, 2], stddev=1/128.0)
biases = _variable_on_cpu('biases', [2], tf.constant_initializer(0.0))
softmax_linear = tf.add(tf.matmul(full5_dropout, weights), biases, name=scope.name)
_activation_summary(softmax_linear)
return softmax_linear
def loss(logits, labels):
labels = tf.cast(labels, tf.float32)
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits, labels, name='cross_entropy_per_example')
cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
tf.add_to_collection('losses', cross_entropy_mean)
return tf.add_n(tf.get_collection('losses'), name='total_loss'), cross_entropy_mean
def _add_loss_summaries(total_loss):
"""Add summaries for losses in CIFAR-10 model.
Generates moving average for all losses and associated summaries for
visualizing the performance of the network.
Args:
total_loss: Total loss from loss().
Returns:
loss_averages_op: op for generating moving averages of losses.
"""
# Compute the moving average of all individual losses and the total loss.
loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
losses = tf.get_collection('losses')
loss_averages_op = loss_averages.apply(losses + [total_loss])
# Attach a scalar summary to all individual losses and the total loss; do the
# same for the averaged version of the losses.
for l in losses + [total_loss]:
# Name each loss as '(raw)' and name the moving average version of the loss
# as the original loss name.
tf.scalar_summary(l.op.name +' (raw)', l)
tf.scalar_summary(l.op.name, loss_averages.average(l))
return loss_averages_op
def train(loss, step, batchSize):
numBatchesPerEpoch = NUM_EXAMPLES_PER_EPOCH / batchSize
decay_steps = int(numBatchesPerEpoch * NUM_EPOCHS_PER_DECAY)
# Decay the learning rate exponentially based on the number of steps.
lr = tf.train.exponential_decay(INITIAL_LEARNING_RATE,
step,
decay_steps,
LEARNING_RATE_DECAY_FACTOR,
staircase=True)
tf.scalar_summary('learning_rate', lr)
loss_averages_op = _add_loss_summaries(loss)
# compute gradients
with tf.control_dependencies([loss_averages_op]):
opt = tf.train.GradientDescentOptimizer(lr)
grads = opt.compute_gradients(loss)
# apply gradients
apply_gradient_op = opt.apply_gradients(grads, global_step = step)
# add histograms for trainable variables
for var in tf.trainable_variables():
tf.histogram_summary(var.op.name, var)
# add histograms for gradients:
for grad, var in grads:
if grad is not None:
tf.histogram_summary(var.op.name + '/gradients', grad)
# Track the moving average of all trainable variables
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, step)
variable_averages_op = variable_averages.apply(tf.trainable_variables())
with tf.control_dependencies([apply_gradient_op, variable_averages_op]):
train_op = tf.no_op(name='train')
return train_op