如何引用R data.table中的多个先前行

时间:2016-08-15 06:47:06

标签: r data.table

我对R中的data.table有疑问 我有这样的数据集

data <- data.table(a=c(1:7,12,32,13),b=c(1,5,6,7,8,3,2,5,1,4))

     a b
 1:  1 1
 2:  2 5
 3:  3 6
 4:  4 7
 5:  5 8
 6:  6 3
 7:  7 2
 8: 12 5
 9: 32 1
 10: 13 4

现在我想生成第三列c,它将a的每一行的值与b的所有先前值进行比较,并检查b的值是否大于a。例如,在第5行,a = 5,并且b的先前值是1,5,6,7。因此6和7大于5,因此c的值应为1,否则为0。 结果应该是这样的

     a b  c
 1:  1 1 NA
 2:  2 5  0
 3:  3 6  1
 4:  4 7  1
 5:  5 8  1
 6:  6 3  1
 7:  7 2  1
 8: 12 5  0
 9: 32 1  0
10: 13 4  0

我尝试使用for循环,但需要很长时间。我也尝试过shift但是我不能用shift来引用多个先前的行。有人有什么建议吗?

2 个答案:

答案 0 :(得分:6)

library(data.table)
data <- data.table(a=c(1:7,12,32,13),b=c(1,5,6,7,8,3,2,5,1,4))
data[,c:= a <= shift(cummax(b))]

答案 1 :(得分:2)

这是基础R解决方案(请参阅下面的dplyr解决方案):

data$c = NA
data$c[2:nrow(data)] <- sapply(2:nrow(data), function(x) { data$c[x] <- any(data$a[x] < data$b[1:(x-1)]) } )

##      a b  c
##  1:  1 1 NA
##  2:  2 5  0
##  3:  3 6  1
##  4:  4 7  1
##  5:  5 8  1
##  6:  6 3  1
##  7:  7 2  1
##  8: 12 5  0
##  9: 32 1  0
## 10: 13 4  0

修改

以下是使用dplyr

的更简单的解决方案
library(dplyr)
### Given the cumulative max and comparing to 'a', set see to 1/0.
data %>% mutate(c = ifelse(a < lag(cummax(b)), 1, 0))

##     a b  c
## 1   1 1 NA
## 2   2 5  0
## 3   3 6  1
## 4   4 7  1
## 5   5 8  1
## 6   6 3  1
## 7   7 2  1
## 8  12 5  0
## 9  32 1  0
## 10 13 4  0

### Using 'shift' with dplyr
data %>% mutate(c = ifelse(a <= shift(cummax(b)), 1, 0))