访问5字节结构比8字节慢得多

时间:2016-08-15 04:25:32

标签: c# .net arrays performance benchmarking

我有一个代码,可以根据另一个小数组中的值更新数组。

  for (var i = 0; i < result.Length; i++)
  {
    var c = cards[i];
    result[i] -= one[c.C0] + one[c.C1];
  }

其中c是一个结构,它是一对代表卡片卡片的字节。 one是一个数组大小为52(包含来自牌组的52张牌中每一张的条目)

我写了一个基准来分析这段代码:

private void TestCards2(int testRepetitions, float[] result, float[] one, Cards[] cards)
{
  for (var r = 0; r < testRepetitions; r++)
    for (var i = 0; i < result.Length; i++)
    {
      var c = cards[i];
      result[i] -= one[c.C0] + one[c.C1];
    }
}

设置testRepetitions = 2500万,并使用256个元素的数组(result.Length = 256),它在我的机器上运行大约8.5秒。

这是Cards结构:

struct Cards
{
  public byte C0;
  public byte C1;

  public Cards(byte c0, byte c1)
  {
    C0 = c0;
    C1 = c1;
  }
}

当我修改该结构以容纳5张卡(5个字节)时,相同的基准测试现在需要~13秒。 为什么会这样?计算是相同的,剩余的3张卡未使用,所有阵列都足够小,以适应L1缓存。

更奇怪的是,如果我进一步更换卡片现在可以容纳8个字节,那么基准测试现在更快,大约需要10秒。

我的设置:

VS 2015 Update 3.
.NET 4.6.2
Release Build x64
CPU: Haswell i7-5820K CPU @ 3.30GHz

以下是我得到的确切时间:

Test With 2 Cards. Time = 8582 ms
Test With 5 Cards. Time = 12910 ms
Test With 8 Cards. Time = 10180 ms

这里发生了什么?

基准代码:

class TestAdjustment
  {
    public void Test()
    {
      using (Process p = Process.GetCurrentProcess())
        p.PriorityClass = ProcessPriorityClass.High;

      var size = 256;

      float[] one = ArrayUtils.CreateRandomFloatArray(size:52);
      int[] card0 = ArrayUtils.RandomIntArray(size, minValue:0, maxValueInclusive:51);
      int[] card1 = ArrayUtils.RandomIntArray(size, minValue: 0, maxValueInclusive: 51);

      Cards[] cards = CreateCardsArray(card0, card1);
      Cards5[] cards5 = CreateCards5Array(card0, card1);
      Cards8[] cards8 = CreateCards8Array(card0, card1);

      float[] result = ArrayUtils.CreateRandomFloatArray(size);
      float[] resultClone = result.ToArray(); 


      var testRepetitions = 25*1000*1000;

      var sw = Stopwatch.StartNew();


      TestCards2(testRepetitions, result, one, cards);
      WriteLine($"Test With 2 Cards. Time = {sw.ElapsedMilliseconds} ms");
      result = resultClone.ToArray(); //restore original array from the clone, so that next method works on the same data
      sw.Restart();


      TestCards5(testRepetitions, result, one, cards5);
      WriteLine($"Test With 5 Cards. Time = {sw.ElapsedMilliseconds} ms");
      result = resultClone.ToArray();
      sw.Restart();


      TestCards8(testRepetitions, result, one, cards8);
      WriteLine($"Test With 8 Cards. Time = {sw.ElapsedMilliseconds} ms");


    }



    private void TestCards2(int testRepetitions, float[] result, float[] one, Cards[] cards)
    {
      for (var r = 0; r < testRepetitions; r++)
        for (var i = 0; i < result.Length; i++)
        {
          var c = cards[i];
          result[i] -= one[c.C0] + one[c.C1];
        }
    }

    private void TestCards5(int testRepetitions, float[] result, float[] one, Cards5[] cards)
    {
      for (var r = 0; r < testRepetitions; r++)
        for (var i = 0; i < result.Length; i++)
        {
          var c = cards[i];
          result[i] -= one[c.C0] + one[c.C1];
        }
    }


    private void TestCards8(int testRepetitions, float[] result, float[] one, Cards8[] cards)
    {
      for (var r = 0; r < testRepetitions; r++)
        for (var i = 0; i < result.Length; i++)
        {
          var c = cards[i];
          result[i] -= one[c.C0] + one[c.C1];
        }
    }


    private Cards[] CreateCardsArray(int[] c0, int[] c1)
    {
      var result = new Cards[c0.Length];
      for (var i = 0; i < result.Length; i++)
        result[i] = new Cards((byte)c0[i], (byte)c1[i]);

      return result;
    }

    private Cards5[] CreateCards5Array(int[] c0, int[] c1)
    {
      var result = new Cards5[c0.Length];
      for (var i = 0; i < result.Length; i++)
        result[i] = new Cards5((byte)c0[i], (byte)c1[i]);

      return result;
    }

    private Cards8[] CreateCards8Array(int[] c0, int[] c1)
    {
      var result = new Cards8[c0.Length];
      for (var i = 0; i < result.Length; i++)
        result[i] = new Cards8((byte)c0[i], (byte)c1[i]);

      return result;
    }
  }


  struct Cards
  {
    public byte C0;
    public byte C1;

    public Cards(byte c0, byte c1)
    {
      C0 = c0;
      C1 = c1;
    }
  }

  struct Cards5
  {
    public byte C0, C1, C2, C3, C4;

    public Cards5(byte c0, byte c1)
    {
      C0 = c0;
      C1 = c1;
      C2 = C3 = C4 = 0;
    }
  }

  struct Cards8
  {
    public byte C0, C1, C2, C3, C4, C5, C6, C7;


    public Cards8(byte c0, byte c1)
    {
      C0 = c0;
      C1 = c1;
      C2 = C3 = C4 = C5 = C6 = C7 = 0;
    }
  }

修改的 我再次重新运行基准测试,进行了1亿次迭代。结果如下:

Test With 5 Cards. Time = 52245 ms
Test With 8 Cards. Time = 40531 ms

以相反的顺序:

Test With 8 Cards. Time = 41041 ms
Test With 5 Cards. Time = 52034 ms

在Surface Pro 4上运行它(Skylake i7-6650U Turbo-boosted到~3.4ghz):

Test With 8 Cards. Time = 47913 ms
Test With 5 Cards. Time = 55182 ms

因此,差异仍然存在,并且不依赖于订单。

我还使用英特尔VTune进行了分析,它显示“5张卡”版本的0.3和“8张卡片”的0.27的CPI。

Edit2 添加了用于创建初始随机数组的ArrayUtils类。

 public static class ArrayUtils
  {
    static Random rand = new Random(137);

    public static float[] CreateRandomFloatArray(int size)
    {
      var result = new float[size];
      for (int i = 0; i < size; i++)
        result[i] = (float) rand.NextDouble();

      return result;
    }

    public static int[] RandomIntArray(int size, int minValue, int maxValueInclusive)
    {
      var result = new int[size];
      for (int i = 0; i < size; i++)
        result[i] = rand.Next(minValue, maxValueInclusive + 1);

      return result;

    }
  }

1 个答案:

答案 0 :(得分:19)

所有关于未对齐的内存访问。未对齐的内存就绪延迟大于对齐的内存读取延迟。要完成实验,请添加结构Cards3Cards4等。让我们看看相应的数组如何在内存中表示。

enter image description here

接下来,让我们改进您的基准。

  1. 我们将使用BenchmarkDotNet(此工具将执行大量基准测试程序,如预热,自动选择迭代量,统计计算等)。
  2. 我们将为所有Cards2 .. Cards8数组执行基准测试,而不仅仅是其中的3个。
  3. 此外,我们将检查所有JIT编译器的完整.NET Framework(LegacyJIT-x86,LegacyJIT-x64,RyuJIT-x64)和Mono。
  4. 这是我的环境:

    Host Process Environment Information:
    BenchmarkDotNet.Core=v0.9.9.0
    OS=Microsoft Windows NT 6.2.9200.0
    Processor=Intel(R) Core(TM) i7-4810MQ CPU 2.80GHz, ProcessorCount=8
    Frequency=2728068 ticks, Resolution=366.5598 ns, Timer=TSC
    CLR1=MS.NET 4.0.30319.42000, Arch=64-bit RELEASE [RyuJIT]
    CLR2=Mono JIT compiler version 4.4.0, Arch=32-bit
    GC=Concurrent Workstation
    JitModules=clrjit-v4.6.1080.0
    

    我的结果:

     Method | Platform |       Jit | Toolchain | Runtime |    Median |    StdDev |
    ------- |--------- |---------- |---------- |-------- |---------- |---------- |
         C2 |     Host |      Host |      Mono |    Mono | 3.9230 ns | 0.0532 ns |
         C3 |     Host |      Host |      Mono |    Mono | 4.8223 ns | 0.0920 ns |
         C4 |     Host |      Host |      Mono |    Mono | 5.9149 ns | 0.1207 ns |
         C5 |     Host |      Host |      Mono |    Mono | 6.3981 ns | 0.0913 ns |
         C6 |     Host |      Host |      Mono |    Mono | 7.1179 ns | 0.1222 ns |
         C7 |     Host |      Host |      Mono |    Mono | 7.6318 ns | 0.1269 ns |
         C8 |     Host |      Host |      Mono |    Mono | 8.4650 ns | 0.1497 ns |
         C2 |      X64 | LegacyJit |      Host |    Host | 2.3515 ns | 0.0150 ns |
         C3 |      X64 | LegacyJit |      Host |    Host | 4.2553 ns | 0.0700 ns |
         C4 |      X64 | LegacyJit |      Host |    Host | 1.4366 ns | 0.0385 ns |
         C5 |      X64 | LegacyJit |      Host |    Host | 2.3688 ns | 0.0359 ns |
         C6 |      X64 | LegacyJit |      Host |    Host | 2.3684 ns | 0.0404 ns |
         C7 |      X64 | LegacyJit |      Host |    Host | 3.0404 ns | 0.0664 ns |
         C8 |      X64 | LegacyJit |      Host |    Host | 1.4510 ns | 0.0333 ns |
         C2 |      X64 |    RyuJit |      Host |    Host | 1.9281 ns | 0.0306 ns |
         C3 |      X64 |    RyuJit |      Host |    Host | 2.1183 ns | 0.0348 ns |
         C4 |      X64 |    RyuJit |      Host |    Host | 1.9395 ns | 0.0397 ns |
         C5 |      X64 |    RyuJit |      Host |    Host | 2.7706 ns | 0.0387 ns |
         C6 |      X64 |    RyuJit |      Host |    Host | 2.6471 ns | 0.0513 ns |
         C7 |      X64 |    RyuJit |      Host |    Host | 2.9743 ns | 0.0541 ns |
         C8 |      X64 |    RyuJit |      Host |    Host | 2.6280 ns | 0.1526 ns |
         C2 |      X86 | LegacyJit |      Host |    Host | 3.0854 ns | 0.2172 ns |
         C3 |      X86 | LegacyJit |      Host |    Host | 3.1627 ns | 0.1126 ns |
         C4 |      X86 | LegacyJit |      Host |    Host | 3.0577 ns | 0.0929 ns |
         C5 |      X86 | LegacyJit |      Host |    Host | 5.0957 ns | 0.1601 ns |
         C6 |      X86 | LegacyJit |      Host |    Host | 6.1723 ns | 0.1177 ns |
         C7 |      X86 | LegacyJit |      Host |    Host | 7.1155 ns | 0.0803 ns |
         C8 |      X86 | LegacyJit |      Host |    Host | 3.7703 ns | 0.1276 ns |
    

    enter image description here

    完整源代码:

    using System;
    using System.Linq;
    using BenchmarkDotNet.Attributes;
    using BenchmarkDotNet.Attributes.Exporters;
    using BenchmarkDotNet.Attributes.Jobs;
    using BenchmarkDotNet.Running;
    
    [LegacyJitX86Job, LegacyJitX64Job, RyuJitX64Job, MonoJob]
    [RPlotExporter]
    public class CardBenchmarks
    {
      public const int Size = 256;
    
      private float[] result, one;
      private Cards2[] cards2;
      private Cards3[] cards3;
      private Cards4[] cards4;
      private Cards5[] cards5;
      private Cards6[] cards6;
      private Cards7[] cards7;
      private Cards8[] cards8;
    
      [Setup]
      public void Setup()
      {
        result = ArrayUtils.CreateRandomFloatArray(Size);
        one = ArrayUtils.CreateRandomFloatArray(size: 52);
        var c0 = ArrayUtils.RandomByteArray(Size, minValue: 0, maxValueInclusive: 51);
        var c1 = ArrayUtils.RandomByteArray(Size, minValue: 0, maxValueInclusive: 51);
    
        cards2 = CardUtls.Create2(c0, c1);
        cards3 = CardUtls.Create3(c0, c1);
        cards4 = CardUtls.Create4(c0, c1);
        cards5 = CardUtls.Create5(c0, c1);
        cards6 = CardUtls.Create6(c0, c1);
        cards7 = CardUtls.Create7(c0, c1);
        cards8 = CardUtls.Create8(c0, c1);
      }
    
      [Benchmark(OperationsPerInvoke = Size)]
      public void C2()
      {
        for (var i = 0; i < result.Length; i++)
        {
          var c = cards2[i];
          result[i] -= one[c.C0] + one[c.C1];
        }
      }
    
      [Benchmark(OperationsPerInvoke = Size)]
      public void C3()
      {
        for (var i = 0; i < result.Length; i++)
        {
          var c = cards3[i];
          result[i] -= one[c.C0] + one[c.C1];
        }
      }
    
      [Benchmark(OperationsPerInvoke = Size)]
      public void C4()
      {
        for (var i = 0; i < result.Length; i++)
        {
          var c = cards4[i];
          result[i] -= one[c.C0] + one[c.C1];
        }
      }
    
      [Benchmark(OperationsPerInvoke = Size)]
      public void C5()
      {
        for (var i = 0; i < result.Length; i++)
        {
          var c = cards5[i];
          result[i] -= one[c.C0] + one[c.C1];
        }
      }
    
      [Benchmark(OperationsPerInvoke = Size)]
      public void C6()
      {
        for (var i = 0; i < result.Length; i++)
        {
          var c = cards6[i];
          result[i] -= one[c.C0] + one[c.C1];
        }
      }
    
      [Benchmark(OperationsPerInvoke = Size)]
      public void C7()
      {
        for (var i = 0; i < result.Length; i++)
        {
          var c = cards7[i];
          result[i] -= one[c.C0] + one[c.C1];
        }
      }
    
      [Benchmark(OperationsPerInvoke = Size)]
      public void C8()
      {
        for (var i = 0; i < result.Length; i++)
        {
          var c = cards8[i];
          result[i] -= one[c.C0] + one[c.C1];
        }
      }
    }
    
    public static class ArrayUtils
    {
      private static readonly Random Rand = new Random(137);
    
      public static float[] CreateRandomFloatArray(int size)
      {
        var result = new float[size];
        for (int i = 0; i < size; i++)
          result[i] = (float) Rand.NextDouble();
        return result;
      }
    
      public static byte[] RandomByteArray(int size, int minValue, int maxValueInclusive)
      {
        var result = new byte[size];
        for (int i = 0; i < size; i++)
          result[i] = (byte) Rand.Next(minValue, maxValueInclusive + 1);
        return result;
      }
    }
    
    public static class CardUtls
    {
      private static T[] Create<T>(int length, Func<int, T> create) => Enumerable.Range(0, length).Select(create).ToArray();
    
      public static Cards2[] Create2(byte[] c0, byte[] c1) => Create(c0.Length, i => new Cards2 {C0 = c0[i], C1 = c1[i]});
      public static Cards3[] Create3(byte[] c0, byte[] c1) => Create(c0.Length, i => new Cards3 {C0 = c0[i], C1 = c1[i]});
      public static Cards4[] Create4(byte[] c0, byte[] c1) => Create(c0.Length, i => new Cards4 {C0 = c0[i], C1 = c1[i]});
      public static Cards5[] Create5(byte[] c0, byte[] c1) => Create(c0.Length, i => new Cards5 {C0 = c0[i], C1 = c1[i]});
      public static Cards6[] Create6(byte[] c0, byte[] c1) => Create(c0.Length, i => new Cards6 {C0 = c0[i], C1 = c1[i]});
      public static Cards7[] Create7(byte[] c0, byte[] c1) => Create(c0.Length, i => new Cards7 {C0 = c0[i], C1 = c1[i]});
      public static Cards8[] Create8(byte[] c0, byte[] c1) => Create(c0.Length, i => new Cards8 {C0 = c0[i], C1 = c1[i]});
    }
    
    public struct Cards2
    {
      public byte C0, C1;
    }
    
    public struct Cards3
    {
      public byte C0, C1, C2;
    }
    
    public struct Cards4
    {
      public byte C0, C1, C2, C3;
    }
    
    public struct Cards5
    {
      public byte C0, C1, C2, C3, C4;
    }
    
    public struct Cards6
    {
      public byte C0, C1, C2, C3, C4, C5;
    }
    
    public struct Cards7
    {
      public byte C0, C1, C2, C3, C4, C5, C6;
    }
    
    public struct Cards8
    {
      public byte C0, C1, C2, C3, C4, C5, C6, C7;
    }
    
    
    class Program
    {
      static void Main()
      {
        BenchmarkRunner.Run<CardBenchmarks>();
      }
    }
    

    答案

    正如您所看到的,您的基准测试很难,有很多不同的因素会影响您的表现。最重要的事情之一是运行时如何布局数据。例如,您不会在Mono上观察到所描述的行为,因为Mono和Full Framework具有不同的布局算法(在Mono上我们有Marshal.SizeOf(typeof(Card2)) == 8)。

    我们在完整框架上有Time(Card5) > Time(Card8)因为Card5产生了许多与Card8不同的未对齐读取(参见第一张图片)。

    更新

    来自the comment的问题:

      

    你知道为什么3字节在你的RyuJIT64基准测试中表现优于8字节吗?

    让我们看看asm代码:

    ; RyuJIT-x64, C3
                    var c = cards3[i];
    00007FFEDF0CADCE  mov         r10,r9  
    00007FFEDF0CADD1  mov         r11d,dword ptr [r10+8]  
    00007FFEDF0CADD5  cmp         eax,r11d  
    00007FFEDF0CADD8  jae         00007FFEDF0CAE44  
    00007FFEDF0CADDA  movsxd      r11,eax  
    00007FFEDF0CADDD  imul        r11,r11,3  
    00007FFEDF0CADE1  lea         r10,[r10+r11+10h]  
    00007FFEDF0CADE6  movzx       r11d,byte ptr [r10]          ; !!!
    00007FFEDF0CADEA  movzx       r10d,byte ptr [r10+1]        ; !!!
    
    ; RyuJIT-x64, C8
                    var c = cards8[i];
    00007FFEDF0CAE8C  mov         rdx,qword ptr [rcx+48h]  
    00007FFEDF0CAE90  mov         r8d,dword ptr [rdx+8]  
    00007FFEDF0CAE94  cmp         eax,r8d  
    00007FFEDF0CAE97  jae         00007FFEDF0CAF0C  
    00007FFEDF0CAE99  movsxd      r8,eax  
    00007FFEDF0CAE9C  mov         rdx,qword ptr [rdx+r8*8+10h] ; !!! 
    00007FFEDF0CAEA1  mov         qword ptr [rsp+28h],rdx      ; !!!
    

    C3情况下,RyuJIT将目标字节保存在r11dr10d寄存器中;在C8的情况下,RyuJIT将它们保持在堆栈(qword ptr [rsp+28h])。解释:当前版本的RyuJIT(在我的例子中为v4.6.1080.0)对不超过4个字段的结构进行标量替换(参见coreclr#6839)。因此,C5C6C7C8的RyuJIT效果低于C2C3,{{1}的效果}。注意:在RyuJIT的未来版本中可能会更改此行为。