我正在与粮农组织的农业作物生产数据库合作。具体来说,我有一个数据表,显示从1961年到2014年,世界上每个国家每年的水稻产量。这是我的数据的简化版本:
d <- data.table(structure(list(Year = c(1961, 1962, 1963, 1964, 1965, 1966, 1967,
1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978,
1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989,
1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
2012, 2013, 2014, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968,
1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979,
1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990,
1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2005, 2006), Country = c("Afghanistan", "Afghanistan",
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan",
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan",
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan",
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan",
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan",
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan",
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan",
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan",
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan",
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan",
"Afghanistan", "Afghanistan", "Albania", "Albania", "Albania",
"Albania", "Albania", "Albania", "Albania", "Albania", "Albania",
"Albania", "Albania", "Albania", "Albania", "Albania", "Albania",
"Albania", "Albania", "Albania", "Albania", "Albania", "Albania",
"Albania", "Albania", "Albania", "Albania", "Albania", "Albania",
"Albania", "Albania", "Albania", "Albania", "Albania", "Albania",
"Albania", "Albania", "Albania", "Albania", "Albania", "Albania",
"Albania", "Albania", "Albania", "Albania", "Albania", "Albania",
"Albania"), totalprod = c(319000, 319000, 319000, 380000, 380000,
337000, 396000, 402000, 407000, 366000, 350000, 4e+05, 420000,
420000, 435000, 448000, 4e+05, 428000, 439000, 415000, 390000,
364000, 350000, 334000, 317000, 336000, 324000, 343000, 320000,
333000, 335000, 3e+05, 3e+05, 342000, 390000, 340000, 4e+05,
450000, 280000, 260000, 242000, 388000, 434000, 463000, 485000,
540000, 552000, 612000, 645000, 672000, 672000, 5e+05, 512094,
537000, 4603, 5683, 9135, 8173, 10225, 10524, 11254, 12807, 14276,
14924, 10760, 12000, 15168, 12000, 13500, 14000, 14400, 14800,
15520, 13000, 13900, 11900, 13000, 12600, 12000, 11000, 10600,
8830, 8450, 7000, 2283, 960, 585, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0)), .Names = c("Year", "Country", "totalprod"), class = "data.frame", row.names = c(NA,
-100L)))
我需要以两种不同的方式总结这个数据表:
a)首先,我需要通过汇总每个国家/地区的年产量来计算每年的全球稻米产量。我设法通过这样做来回答这个问题:
d.global.year <- d[, list(totalprodyear=sum(totalprod)), by=Year]
b)每当我每年进行全球大米生产时,我需要确定每个国家/地区每年的贡献量。这可以通过每年将每个国家的产量除以全球稻米产量来实现。
但是,我仍在试图找出解决方法b)。
EDITED: 预期产出:
让我们以1961年全球大米消费量为例:323603
在这种情况下,阿富汗的贡献将是319000/323603 = 0.986,而阿尔巴尼亚的贡献将是4603/323603 = 0.014
任何提示?
答案 0 :(得分:2)
这是一个基本解决方案,可以按照您要求的步骤进行分解。
xd <- xtabs( totalprod~ Year+Country, data=d)
xd <- cbind(xd, yr.total=rowSums(xd) )
str(xd)
num [1:54, 1:3] 319000 319000 319000 380000 380000 337000 396000 402000 407000 366000 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:54] "1961" "1962" "1963" "1964" ...
..$ : chr [1:3] "Afghanistan" "Albania" "yr.total"
xd[ , -3]/xd[,3]
Afghanistan Albania
1961 0.9857758 0.014224219
1962 0.9824968 0.017503226
1963 0.9721608 0.027839152
1964 0.9789450 0.021055045
#snipped table
答案 1 :(得分:1)
您可以在two-stage
groupby流程中执行此操作,首先按Year
分组并计算每年的总产品,然后按Year
和Country
进行分组您可以使用上一阶段计算的总产品来计算每个国家/地区贡献的比例:
sumDt <- d[, totalprodyear :=sum(totalprod), by=Year]
[, .(totalprodyear, percentprod = sum(totalprod)/totalprodyear), by = .(Year, Country)]
sumDt[, head(.SD, 3), by = Country]
# Country Year totalprodyear percentprod
# 1: Afghanistan 1961 323603 0.98577578
# 2: Afghanistan 1962 324683 0.98249677
# 3: Afghanistan 1963 328135 0.97216085
# 4: Albania 1961 323603 0.01422422
# 5: Albania 1962 324683 0.01750323
# 6: Albania 1963 328135 0.02783915