Concat /沿现有轴合并xr.DataArray(Xarray | Python 3)

时间:2016-08-12 19:53:11

标签: python pandas python-xarray

这是一个玩具示例,但我有2个数据帧; (1)rows = samples,cols = attributes; (2)rows = samples,cols = metadata-fields。

我希望concatmerge创建三维xr.DataArray。我已经多次这样做但我无法弄清楚为什么它在这种情况下不起作用?我想concat沿着patient_id轴获得3D xr.DataArray

为什么不xr.concat构建三维DataArray?我认为我错误地使用dim参数,因为沿着新轴应该concat但是有没有办法沿现有轴做这个?

我正在尝试使用Create DataArray from Dict of 2D DataFrames/Arrays中的方法,但它无效。我让merge工作,但它将它放入DataSet w / 2数据变量

np.random.seed(0)
patient_ids = ["patient_%d"%_ for _ in range(42)]
attr_ids = ["attr_%d"%_ for _ in range(481)]
meta_ids = ["meta_%d"%_ for _ in range(32)]

DA_A = xr.DataArray(pd.DataFrame(np.random.random((42,481)), 
                                 index=patient_ids, 
                                 columns=attr_ids), 
                    dims=["patient_id","attribute"])
DA_B = xr.DataArray(pd.DataFrame(np.random.random((42,32)), 
                                 index=patient_ids,
                                 columns=meta_ids), 
                    dims=["patient_id","metadata"])
DA_A.coords
# Coordinates:
#   * patient_id  (patient_id) object 'patient_0' 'patient_1' 'patient_2' ...
#   * attribute   (attribute) object 'attr_0' 'attr_1' 'attr_2' 'attr_3' ...
DA_B.coords
# Coordinates:
#   * patient_id  (patient_id) object 'patient_0' 'patient_1' 'patient_2' ...
#   * metadata    (metadata) object 'meta_0' 'meta_1' 'meta_2' 'meta_3' ...
xr.concat([DA_A, DA_B], dim="patient_id")
# KeyError: 'attribute'

1 个答案:

答案 0 :(得分:1)

您不能(还)连接具有不同维度的DataArrays。您需要首先明确地广播它们,例如,

In [38]: xr.concat(xr.broadcast(DA_A, DA_B), dim="patient_id")
Out[38]:
<xarray.DataArray (patient_id: 84, attribute: 481, metadata: 32)>
array([[[ 0.5488135 ,  0.5488135 ,  0.5488135 , ...,  0.5488135 ,
          0.5488135 ,  0.5488135 ],
        ...,
        [ 0.79649197,  0.97094708,  0.95542135, ...,  0.37856775,
          0.65855316,  0.37893685]]])
Coordinates:
  * attribute   (attribute) object 'attr_0' 'attr_1' 'attr_2' 'attr_3' ...
  * metadata    (metadata) object 'meta_0' 'meta_1' 'meta_2' 'meta_3' ...
  * patient_id  (patient_id) object 'patient_0' 'patient_1' 'patient_2' ...

但正如jhamman在你的问题评论中提到的那样,实际上你可能会发现使用单个Dataset对象更容易,有两个不同的变量,例如,

In [39]: xr.Dataset({'A': DA_A, 'B': DA_B})
Out[39]:
<xarray.Dataset>
Dimensions:     (attribute: 481, metadata: 32, patient_id: 42)
Coordinates:
  * patient_id  (patient_id) object 'patient_0' 'patient_1' 'patient_2' ...
  * attribute   (attribute) object 'attr_0' 'attr_1' 'attr_2' 'attr_3' ...
  * metadata    (metadata) object 'meta_0' 'meta_1' 'meta_2' 'meta_3' ...
Data variables:
    A           (patient_id, attribute) float64 0.5488 0.7152 0.6028 0.5449 ...
    B           (patient_id, metadata) float64 0.2438 0.8216 0.9237 0.3999 ...