我在pandas数据框中有两列年龄和性别
sex = ['m', 'f' , 'm', 'f', 'f', 'f', 'f']
age = [16 , 15 , 14 , 9 , 8 , 2 , 56 ]
现在我想提取第三列:像这样 如果年龄<= 9则输出&#39;儿童&#39;如果年龄> 9,则输出相应的性别
sex = ['m', 'f' , 'm','f' ,'f' ,'f' , 'f']
age = [16 , 15 , 14 , 9 , 8 , 2 , 56 ]
yes = ['m', 'f' ,'m' ,'child','child','child','f' ]
请帮忙 ps。我仍在努力,如果我得到任何东西,我会立即更新
答案 0 :(得分:14)
使用numpy.where
:
df['col3'] = np.where(df['age'] <= 9, 'child', df['sex'])
结果输出:
age sex col3
0 16 m m
1 15 f f
2 14 m m
3 9 f child
4 8 f child
5 2 f child
6 56 f f
<强>计时强>
使用以下设置获取更大的示例DataFrame:
np.random.seed([3,1415])
n = 10**5
df = pd.DataFrame({'sex': np.random.choice(['m', 'f'], size=n), 'age': np.random.randint(0, 100, size=n)})
我得到以下时间:
%timeit np.where(df['age'] <= 9, 'child', df['sex'])
1000 loops, best of 3: 1.26 ms per loop
%timeit df['sex'].where(df['age'] > 9, 'child')
100 loops, best of 3: 3.25 ms per loop
%timeit df.apply(lambda x: 'child' if x['age'] <= 9 else x['sex'], axis=1)
100 loops, best of 3: 3.92 ms per loop
答案 1 :(得分:5)
您可以使用pandas.DataFrame.where。例如
child.where(age<=9, sex)
答案 2 :(得分:4)
df = pd.DataFrame({'sex':['m', 'f' , 'm', 'f', 'f', 'f', 'f'],
'age':[16, 15, 14, 9, 8, 2, 56]})
df['yes'] = df.apply(lambda x: 'child' if x['age'] <= 9 else x['sex'], axis=1)
结果:
age sex yes
0 16 m m
1 15 f f
2 14 m m
3 9 f child
4 8 f child
5 2 f child
6 56 f f