我试图让这个tutorial按预期工作而没有成功(在 bl main 指令后出现问题)。 根据教程命令
(qemu) xp /1dw 0xa0000018
应该导致打印33(但我得到0x00)
a0000018: 33
这是主调用后寄存器的内容(参见startup.s)
(qemu) info registers
R00=a000001c R01=a000001c R02=00000006 R03=00000000
R04=00000000 R05=00000005 R06=00000006 R07=00000007
R08=00000008 R09=00000009 R10=00000000 R11=a3fffffc
R12=00000000 R13=00000000 R14=0000003c R15=00000004
PSR=800001db N--- A und32
FPSCR: 00000000
我有以下文件
main.c
startup.s
lscript.ld
Makefile
我正在使用以下工具链
arm-2013.11-24-arm-none-eabi-i686-pc-linux-gnu
生成文件:
SRCS := main.c startup.s
LINKER_NAME := lscript.ld
ELF_NAME := program.elf
BIN_NAME := program.bin
FLASH_NAME := flash.bin
CC := arm-none-eabi
CFLAGS := -nostdlib
OBJFLAGS ?= -DS
QEMUFLAGS := -M connex -pflash $(FLASH_NAME) -nographic -serial /dev/null
# Allocate 16MB to use as a virtual flash for th qemu
# bs = blocksize -> 4KB
# count = number of block -> 4096
# totalsize = 16MB
setup:
dd if=/dev/zero of=$(FLASH_NAME) bs=4096 count=4096
# Compile srcs and write to virtual flash
all: clean setup
$(CC)-gcc $(CFLAGS) -o $(ELF_NAME) -T $(LINKER_NAME) $(SRCS)
$(CC)-objcopy -O binary $(ELF_NAME) $(BIN_NAME)
dd if=$(BIN_NAME) of=$(FLASH_NAME) bs=4096 conv=notrunc
objdump:
$(CC)-objdump $(OBJFLAGS) $(ELF_NAME)
mem-placement:
$(CC)-nm -n $(ELF_NAME)
qemu:
qemu-system-arm $(QEMUFLAGS)
clean:
rm -rf *.bin
rm -rf *.elf
的main.c :
static int arr[] = { 1, 10, 4, 5, 6, 7 };
static int sum;
static const int n = sizeof(arr) / sizeof(arr[0]);
int main()
{
int i;
for (i = 0; i < n; i++){
sum += arr[i];
}
return 0;
}
的Startup.s :
.section "vectors"
reset: b _start
undef: b undef
swi: b swi
pabt: b pabt
dabt: b dabt
nop
irq: b irq
fiq: b fiq
.text
_start:
init:
@@ Copy data to RAM.
ldr r0, =flash_sdata
ldr r1, =ram_sdata
ldr r2, =data_size
@@ Handle data_size == 0
cmp r2, #0
beq init_bss
copy:
ldrb r4, [r0], #1
strb r4, [r1], #1
subs r2, r2, #1
bne copy
init_bss:
@@ Initialize .bss
ldr r0, =sbss
ldr r1, =ebss
ldr r2, =bss_size
@@ Handle bss_size == 0
cmp r2, #0
beq init_stack
mov r4, #0
zero:
strb r4, [r0], #1
subs r2, r2, #1
bne zero
init_stack:
@@ Initialize the stack pointer
ldr sp, =0xA4000000
@@ **this call dosent work as expected.. (r13/sp contains 0xA4000000)**
bl main
@@ Dosent return from main
@@ r0 should now contain 33
stop:
b stop
lscript.ld :
/*
* Linker for testing purposes
* (using 16 MB virtual flash = 0x0100_0000)
*/
MEMORY {
rom (rx) : ORIGIN = 0x00000000, LENGTH = 0x01000000
ram (rwx) : ORIGIN = 0xA0000000, LENGTH = 0x04000000
}
SECTIONS {
.text : {
* (vectors);
* (.text);
} > rom
.rodata : {
* (.rodata);
} > rom
flash_sdata = .;
ram_sdata = ORIGIN(ram);
.data : AT (flash_sdata) {
* (.data);
} > ram
ram_edata = .;
data_size = ram_edata - ram_sdata;
sbss = .;
.bss : {
* (.bss);
} > ram
ebss = .;
bss_size = ebss - sbss;
/DISCARD/ : {
*(.note*)
*(.comment)
*(.ARM*)
/*
*(.debug*)
*/
}
}
反汇编可执行文件(objdump):
program.elf: file format elf32-littlearm
Disassembly of section .text:
00000000 <reset>:
0: ea000023 b 94 <_start>
00000004 <undef>:
4: eafffffe b 4 <undef>
00000008 <swi>:
8: eafffffe b 8 <swi>
0000000c <pabt>:
c: eafffffe b c <pabt>
00000010 <dabt>:
10: eafffffe b 10 <dabt>
14: e320f000 nop {0}
00000018 <irq>:
18: eafffffe b 18 <irq>
0000001c <fiq>:
1c: eafffffe b 1c <fiq>
00000020 <main>:
20: e52db004 push {fp} ; (str fp, [sp, #-4]!)
24: e28db000 add fp, sp, #0
28: e24dd00c sub sp, sp, #12
2c: e3a03000 mov r3, #0
30: e50b3008 str r3, [fp, #-8]
34: ea00000d b 70 <main+0x50>
38: e3003000 movw r3, #0
3c: e34a3000 movt r3, #40960 ; 0xa000
40: e51b2008 ldr r2, [fp, #-8]
44: e7932102 ldr r2, [r3, r2, lsl #2]
48: e3003018 movw r3, #24
4c: e34a3000 movt r3, #40960 ; 0xa000
50: e5933000 ldr r3, [r3]
54: e0822003 add r2, r2, r3
58: e3003018 movw r3, #24
5c: e34a3000 movt r3, #40960 ; 0xa000
60: e5832000 str r2, [r3]
64: e51b3008 ldr r3, [fp, #-8]
68: e2833001 add r3, r3, #1
6c: e50b3008 str r3, [fp, #-8]
70: e3a02006 mov r2, #6
74: e51b3008 ldr r3, [fp, #-8]
78: e1530002 cmp r3, r2
7c: baffffed blt 38 <main+0x18>
80: e3a03000 mov r3, #0
84: e1a00003 mov r0, r3
88: e24bd000 sub sp, fp, #0
8c: e49db004 pop {fp} ; (ldr fp, [sp], #4)
90: e12fff1e bx lr
00000094 <_start>:
94: e59f004c ldr r0, [pc, #76] ; e8 <stop+0x4>
98: e59f104c ldr r1, [pc, #76] ; ec <stop+0x8>
9c: e59f204c ldr r2, [pc, #76] ; f0 <stop+0xc>
a0: e3520000 cmp r2, #0
a4: 0a000003 beq b8 <init_bss>
000000a8 <copy>:
a8: e4d04001 ldrb r4, [r0], #1
ac: e4c14001 strb r4, [r1], #1
b0: e2522001 subs r2, r2, #1
b4: 1afffffb bne a8 <copy>
000000b8 <init_bss>:
b8: e59f0034 ldr r0, [pc, #52] ; f4 <stop+0x10>
bc: e59f1034 ldr r1, [pc, #52] ; f8 <stop+0x14>
c0: e59f2034 ldr r2, [pc, #52] ; fc <stop+0x18>
c4: e3520000 cmp r2, #0
c8: 0a000003 beq dc <init_stack>
cc: e3a04000 mov r4, #0
000000d0 <zero>:
d0: e4c04001 strb r4, [r0], #1
d4: e2522001 subs r2, r2, #1
d8: 1afffffc bne d0 <zero>
000000dc <init_stack>:
dc: e3a0d329 mov sp, #-1543503872 ; 0xa4000000
e0: ebffffce bl 20 <main>
000000e4 <stop>:
e4: eafffffe b e4 <stop>
e8: 00000104 andeq r0, r0, r4, lsl #2
ec: a0000000 andge r0, r0, r0
f0: 00000018 andeq r0, r0, r8, lsl r0
f4: a0000018 andge r0, r0, r8, lsl r0
f8: a000001c andge r0, r0, ip, lsl r0
fc: 00000004 andeq r0, r0, r4
Disassembly of section .rodata:
00000100 <n>:
100: 00000006 andeq r0, r0, r6
Disassembly of section .data:
a0000000 <arr>:
a0000000: 00000001 andeq r0, r0, r1
a0000004: 0000000a andeq r0, r0, sl
a0000008: 00000004 andeq r0, r0, r4
a000000c: 00000005 andeq r0, r0, r5
a0000010: 00000006 andeq r0, r0, r6
a0000014: 00000007 andeq r0, r0, r7
Disassembly of section .bss:
a0000018 <sum>:
a0000018: 00000000 andeq r0, r0, r0
有人能指出我正确的方向,为什么这不符合我的期望?
感谢Henrik
答案 0 :(得分:5)
调试!
首先,看一下PC和PSR:你是未定义的指令处理程序中的Undef模式。
好的,在异常模式下,LR会告诉您取消异常的位置。 PC偏移量和首选返回地址之间存在一些稍微复杂的规则,确定完全它指向的内容,但只是在movw
/附近清楚地看到它movt
对。
movw
指令实际上仅存在于ARMv7 ISA之后。一个简短的调查告诉我你正在模拟的机器是一些旧的PXA255,它的CPU只实现了ARMv5 ISA。因此,它出现多年前的指令就不足为奇了。
您的编译器显然已默认配置为以ARMv7为目标(这并不罕见),因此您需要至少将-march=armv5te
添加到CFLAGS以定位适当的体系结构版本。先进的&#39;挑战将是切换到一个不同的,更新的机器,但这将涉及调整链接器脚本到新的内存映射并重写任何硬件触摸代码的新外围设备,所以我要保存一旦您熟悉裸机代码的基础知识并通过硬件参考手册,就可以实现长期的理念。
答案 1 :(得分:1)
我的ubuntu上有相同的代码
arm-none-eabi-gcc -nostdlib -o sum.elf sum.lds startup.s -w
/usr/lib/gcc/arm-none-eabi/4.9.3/../../../arm-none-eabi/bin/ld:警告:找不到条目符号_start;默认为00000000
/tmp/ccBthV7t.o:在函数init_stack':
(.text+0x4c): undefined reference to
main'中
collect2:错误:ld返回1退出状态
答案 2 :(得分:1)
可以正常工作的最小示例
prompt.c example从您的主机终端获取输入,并通过模拟的UART返回所有输出:
enter a character
got: a
new alloc of 1 bytes at address 0x0x4000a1c0
enter a character
got: b
new alloc of 2 bytes at address 0x0x4000a1c0
enter a character
它使用Newlib公开C标准库的子集。如果仅使用C标准库的受限子集,则可以运行用C语言编写的现有程序。
有关Newlib的更多详细信息,位于:https://electronics.stackexchange.com/questions/223929/c-standard-libraries-on-bare-metal/400077#400077
https://github.com/freedomtan/aarch64-bare-metal-qemu/tree/2ae937a2b106b43bfca49eec49359b3e30eac1b1代表-M virt
,只是仓库中的问候世界。编译:
sudo apt-get install gcc-aarch64-linux-gnu
make CROSS_PREFIX=aarch64-linux-gnu-
以下是最小化示例以从程序集中打印单个字符的示例:How to run a bare metal ELF file on QEMU?
https://github.com/bztsrc/raspi3-tutorial代表-M raspi3
。快速入门:https://raspberrypi.stackexchange.com/questions/34733/how-to-do-qemu-emulation-for-bare-metal-raspberry-pi-images/85135#85135关于回购协议的其他一些例子也适用于更高级的主题。
也可以在09_framebuffer
上显示输出。
两者都向UART写一个问候世界。
已在gcc-aarch64-linux-gnu
版4:7.3.0-3ubuntu2
的Ubuntu 18.04中进行了测试。