R将汇总结果(包含所有数据帧列的统计信息)转换为数据帧

时间:2016-08-11 09:19:17

标签: r statistics summary describe

[我是R的新手...]我有dataframe

df1 <- data.frame(c(2,1,2), c(1,2,3,4,5,6), seq(141,170)) #create data.frame
names(df1) <- c('gender', 'age', 'height') #column names

我希望数据框对象中的df1摘要如下所示:

         count     mean    std      min      25%      50%      75%      max
age    30.0000   3.5000 1.7370   1.0000   2.0000   3.5000   5.0000   6.0000
gender 30.0000   1.6667 0.4795   1.0000   1.0000   2.0000   2.0000   2.0000
height 30.0000 155.5000 8.8034 141.0000 148.2500 155.5000 162.7500 170.0000

我在Python中用df1.describe().T生成了这个。我怎么能在R?中做到这一点?

如果我的摘要数据框包含“dtype”,“null”(NULL值的数量),(“数量”)“唯一”和“范围”值以及综合摘要统计:

         count     mean    std      min      25%      50%      75%      max  null  unique  range  dtype
age    30.0000   3.5000 1.7370   1.0000   2.0000   3.5000   5.0000   6.0000     0       6      5  int64
gender 30.0000   1.6667 0.4795   1.0000   1.0000   2.0000   2.0000   2.0000     0       2      1  int64
height 30.0000 155.5000 8.8034 141.0000 148.2500 155.5000 162.7500 170.0000     0      30     29  int64

上述结果的Python代码是:

df1.describe().T.join(pd.DataFrame(df1.isnull().sum(), columns=['null']))\
    .join(pd.DataFrame.from_dict({i:df1[i].nunique() for i in df1.columns}, orient='index')\
    .rename(columns={0:'unique'}))\
    .join(pd.DataFrame.from_dict({i:(df1[i].max() - df1[i].min()) for i in df1.columns}, orient='index')\
    .rename(columns={0:'range'}))\
    .join(pd.DataFrame(df1.dtypes, columns=['dtype']))

谢谢!

2 个答案:

答案 0 :(得分:2)

使用这些库可以非常轻松地读取这些内容 - tidyrdplyr

library("tidyr")
library("dplyr")


df1 <- data.frame(c(2,1,2), c(1,2,3,4,5,6), seq(141,170)) #create data.frame
names(df1) <- c('gender', 'age', 'height') #column names
df2<- gather(df1,"attributes","value")

df2 %>% group_by(attributes) %>% summarise(count = n(), mean = mean(value), med = median(value),sd = sd(value), min = min(value), max = max(value))

#  A tibble: 3 x 7
#   attributes count       mean   med        sd   min   max
#         <chr> <int>      <dbl> <dbl>     <dbl> <dbl> <dbl>
# 1        age    30   3.500000   3.5 1.7370208     1     6
# 2     gender    30   1.666667   2.0 0.4794633     1     2
# 3     height    30 155.500000 155.5 8.8034084   141   170

答案 1 :(得分:1)

我通常使用一个小功能(改编自网上的脚本)来进行这种转换:

sumstats = function(x) { 
  null.k <- function(x) sum(is.na(x))
  unique.k <- function(x) {if (sum(is.na(x)) > 0) length(unique(x)) - 1
    else length(unique(x))}
  range.k <- function(x) max(x, na.rm=TRUE) - min(x, na.rm=TRUE)
  mean.k=function(x) {if (is.numeric(x)) round(mean(x, na.rm=TRUE), digits=2)
    else "N*N"} 
  sd.k <- function(x) {if (is.numeric(x)) round(sd(x, na.rm=TRUE), digits=2)
    else "N*N"} 
  min.k <- function(x) {if (is.numeric(x)) round(min(x, na.rm=TRUE), digits=2)
    else "N*N"} 
  q05 <- function(x) quantile(x, probs=.05, na.rm=TRUE)
  q10 <- function(x) quantile(x, probs=.1, na.rm=TRUE)
  q25 <- function(x) quantile(x, probs=.25, na.rm=TRUE)
  q50 <- function(x) quantile(x, probs=.5, na.rm=TRUE)
  q75 <- function(x) quantile(x, probs=.75, na.rm=TRUE)
  q90 <- function(x) quantile(x, probs=.9, na.rm=TRUE)
  q95 <- function(x) quantile(x, probs=.95, na.rm=TRUE)
  max.k <- function(x) {if (is.numeric(x)) round(max(x, na.rm=TRUE), digits=2)
    else "N*N"} 

  sumtable <- cbind(as.matrix(colSums(!is.na(x))), sapply(x, null.k), sapply(x, unique.k), sapply(x, range.k), sapply(x, mean.k), sapply(x, sd.k),
                    sapply(x, min.k), sapply(x, q05), sapply(x, q10), sapply(x, q25), sapply(x, q50),
                    sapply(x, q75), sapply(x, q90), sapply(x, q95), sapply(x, max.k)) 

  sumtable <- as.data.frame(sumtable); names(sumtable) <- c('count', 'null', 'unique',
                                                            'range', 'mean', 'std', 'min', '5%', '10%', '25%', '50%', '75%', '90%',
                                                            '95%', 'max') 
  return(sumtable)
} 
sumstats(df1)
        count   null    unique  range   mean    std     var     min     5%      10%     25%     50%     75%     90%     95%     max
gender  30.00   0.00    2.00    1.00    1.67    0.48    0.23    1.00    1.00    1.00    1.00    2.00    2.00    2.00    2.00    2.00
age     30.00   0.00    6.00    5.00    3.50    1.74    3.02    1.00    1.00    1.00    2.00    3.50    5.00    6.00    6.00    6.00
height  30.00   0.00    30.00   29.00   155.50  8.80    77.50   141.00  142.45  143.90  148.25  155.50  162.75  167.10  168.55  170.00

您可以轻松地对其进行调整以添加更多描述性列,例如分位数,空值,范围等。它确实返回data.frame。您还可能希望事先在参数中指定NAs的行为。

希望它有所帮助。