我非常有兴趣用不同的渐变来填充条形图的matplotlib / seaborn条,就像在这里完成的那样(据我所知不是matplotlib):
答案 0 :(得分:3)
我正在使用带有palette
选项的seaborn barplot。想象一下,你有一个简单的数据框,如:
df = pd.DataFrame({'a':[1,2,3,4,5], 'b':[10,5,2,4,5]})
使用seaborn:
sns.barplot(df['a'], df['b'], palette='Blues_d')
你可以获得类似的东西:
然后您还可以使用palette
选项和colormap
根据以下数据添加渐变:
sns.barplot(df['a'], df['b'], palette=cm.Blues(df['b']*10)
获得:
希望有所帮助。
答案 1 :(得分:2)
正如Pyplot: vertical gradient fill under curve?中所描述的那样,可以使用图像来创建渐变图。
由于条形是矩形,因此图像的范围可以直接设置为条形的位置和大小。可以在所有条上循环并在相应位置创建图像。结果是一个渐变条形图。
import numpy as np
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
bar = ax.bar([1,2,3,4,5,6],[4,5,6,3,7,5])
def gradientbars(bars):
grad = np.atleast_2d(np.linspace(0,1,256)).T
ax = bars[0].axes
lim = ax.get_xlim()+ax.get_ylim()
for bar in bars:
bar.set_zorder(1)
bar.set_facecolor("none")
x,y = bar.get_xy()
w, h = bar.get_width(), bar.get_height()
ax.imshow(grad, extent=[x,x+w,y,y+h], aspect="auto", zorder=0)
ax.axis(lim)
gradientbars(bar)
plt.show()
答案 2 :(得分:0)
我使用Seaborn而不是Matplotlib修改了@ImportanceOfBeingErnest的答案here。
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
def gradientbars(bars):
grad = np.atleast_2d(np.linspace(0,1,256)).T # Gradient of your choice
rectangles = bars.containers[0]
# ax = bars[0].axes
fig, ax = plt.subplots()
xList = []
yList = []
for rectangle in rectangles:
x0 = rectangle._x0
x1 = rectangle._x1
y0 = rectangle._y0
y1 = rectangle._y1
xList.extend([x0,x1])
yList.extend([y0,y1])
ax.imshow(grad, extent=[x0,x1,y0,y1], aspect="auto", zorder=0)
ax.axis([min(xList), max(xList), min(yList), max(yList)*1.1]) # *1.1 to add some buffer to top of plot
return fig,ax
sns.set(style="whitegrid", color_codes=True)
np.random.seed(sum(map(ord, "categorical")))
# Load dataset
titanic = sns.load_dataset("titanic")
# Make Seaborn countplot
seabornAxHandle = sns.countplot(x="deck", data=titanic, palette="Greens_d")
plt.show() # Vertical bars with horizontal gradient
# Call gradientbars to make vertical gradient barplot using Seaborn ax
figVerticalGradient, axVerticalGradient = gradientbars(seabornAxHandle)
# Styling using the returned ax
axVerticalGradient.xaxis.grid(False)
axVerticalGradient.yaxis.grid(True)
# Labeling plot to match Seaborn
labels=titanic['deck'].dropna().unique().to_list() # Chaining to get tick labels as a list
labels.sort()
plt.ylabel('count')
plt.xlabel('deck')
plt.xticks(range(0,len(labels)), labels) # Set locations and labels
plt.show() # Vertical bars with vertical gradient