我在一台机器上实现了一个带有tensorflow的变分自动编码器。现在我尝试在我的集群上运行它,并提供分布式机制tensorflow。但是以下问题困扰了我好几天。
Traceback (most recent call last):
File "/home/yama/mfs/ZhuSuan/examples/vae.py", line 265, in <module>
print('>> Test log likelihood = {}'.format(np.mean(test_lls)))
File "/usr/lib/python2.7/contextlib.py", line 35, in __exit__
self.gen.throw(type, value, traceback)
File "/mfs/yama/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/training/supervisor.py", line 942, in managed_session
self.stop(close_summary_writer=close_summary_writer)
File "/mfs/yama/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/training/supervisor.py", line 768, in stop
stop_grace_period_secs=self._stop_grace_secs)
File "/mfs/yama/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/training/coordinator.py", line 322, in join
six.reraise(*self._exc_info_to_raise)
File "/mfs/yama/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/training/coordinator.py", line 267, in stop_on_exception
yield
File "/mfs/yama/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/training/coordinator.py", line 411, in run
self.run_loop()
File "/mfs/yama/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/training/supervisor.py", line 972, in run_loop
self._sv.global_step])
File "/mfs/yama/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 372, in run
run_metadata_ptr)
File "/mfs/yama/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 636, in _run
feed_dict_string, options, run_metadata)
File "/mfs/yama/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 708, in _do_run
target_list, options, run_metadata)
File "/mfs/yama/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 728, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors.InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder' with dtype float
[[Node: Placeholder = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:worker/replica:0/task:0/gpu:0"]()]]
[[Node: model_1/fully_connected_10/Relu_G88 = _Recv[client_terminated=false, recv_device="/job:worker/replica:0/task:0/cpu:0", send_device="/job:worker/replica:0/task:0/gpu:0", send_device_incarnation=3964479821165574552, tensor_name="edge_694_model_1/fully_connected_10/Relu", tensor_type=DT_FLOAT, _device="/job:worker/replica:0/task:0/cpu:0"]()]]
Caused by op u'Placeholder', defined at:
File "/home/yama/mfs/ZhuSuan/examples/vae.py", line 201, in <module>
x = tf.placeholder(tf.float32, shape=(None, x_train.shape[1]))
File "/mfs/yama/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/ops/array_ops.py", line 895, in placeholder
name=name)
File "/mfs/yama/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/ops/gen_array_ops.py", line 1238, in _placeholder
name=name)
File "/mfs/yama/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/ops/op_def_library.py", line 704, in apply_op
op_def=op_def)
File "/mfs/yama/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2260, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/mfs/yama/tensorflow/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1230, in __init__
self._traceback = _extract_stack()
这是我的代码,我只是为了简单而粘贴主函数:
if __name__ == "__main__":
tf.set_random_seed(1234)
# Load MNIST
data_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),
'data', 'mnist.pkl.gz')
x_train, t_train, x_valid, t_valid, x_test, t_test = \
dataset.load_mnist_realval(data_path)
x_train = np.vstack([x_train, x_valid])
np.random.seed(1234)
x_test = np.random.binomial(1, x_test, size=x_test.shape).astype('float32')
# Define hyper-parametere
n_z = 40
# Define training/evaluation parameters
lb_samples = 1
ll_samples = 5000
epoches = 10
batch_size = 100
test_batch_size = 100
iters = x_train.shape[0] // batch_size
test_iters = x_test.shape[0] // test_batch_size
test_freq = 10
ps_hosts = FLAGS.ps_hosts.split(",")
worker_hosts = FLAGS.worker_hosts.split(",")
# Create a cluster from the parameter server and worker hosts.
clusterSpec = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})
print("Create and start a server for the local task.")
# Create and start a server for the local task.
server = tf.train.Server(clusterSpec,
job_name=FLAGS.job_name,
task_index=FLAGS.task_index)
print("Start ps and worker server")
if FLAGS.job_name == "ps":
server.join()
elif FLAGS.job_name == "worker":
#set distributed device
with tf.device(tf.train.replica_device_setter(
worker_device="/job:worker/task:%d" % FLAGS.task_index,
cluster=clusterSpec)):
print("Build the training computation graph")
# Build the training computation graph
x = tf.placeholder(tf.float32, shape=(None, x_train.shape[1]))
optimizer = tf.train.AdamOptimizer(learning_rate=0.001, epsilon=1e-4)
with tf.variable_scope("model") as scope:
with pt.defaults_scope(phase=pt.Phase.train):
train_model = M1(n_z, x_train.shape[1])
train_vz_mean, train_vz_logstd = q_net(x, n_z)
train_variational = ReparameterizedNormal(
train_vz_mean, train_vz_logstd)
grads, lower_bound = advi(
train_model, x, train_variational, lb_samples, optimizer)
infer = optimizer.apply_gradients(grads)
print("Build the evaluation computation graph")
# Build the evaluation computation graph
with tf.variable_scope("model", reuse=True) as scope:
with pt.defaults_scope(phase=pt.Phase.test):
eval_model = M1(n_z, x_train.shape[1])
eval_vz_mean, eval_vz_logstd = q_net(x, n_z)
eval_variational = ReparameterizedNormal(
eval_vz_mean, eval_vz_logstd)
eval_lower_bound = is_loglikelihood(
eval_model, x, eval_variational, lb_samples)
eval_log_likelihood = is_loglikelihood(
eval_model, x, eval_variational, ll_samples)
global_step = tf.Variable(0)
saver = tf.train.Saver()
summary_op = tf.merge_all_summaries()
init_op = tf.initialize_all_variables()
# Create a "supervisor", which oversees the training process.
sv = tf.train.Supervisor(is_chief=(FLAGS.task_index == 0),
logdir=LogDir,
init_op=init_op,
summary_op=summary_op,
saver=saver,
global_step=global_step,
save_model_secs=600)
# Run the inference
with sv.managed_session(server.target) as sess:
epoch = 0
while not sv.should_stop() and epoch < epoches:
#for epoch in range(1, epoches + 1):
np.random.shuffle(x_train)
lbs = []
for t in range(iters):
x_batch = x_train[t * batch_size:(t + 1) * batch_size]
x_batch = np.random.binomial( n=1, p=x_batch, size=x_batch.shape).astype('float32')
_, lb = sess.run([infer, lower_bound], feed_dict={x: x_batch})
lbs.append(lb)
if epoch % test_freq == 0:
test_lbs = []
test_lls = []
for t in range(test_iters):
test_x_batch = x_test[
t * test_batch_size: (t + 1) * test_batch_size]
test_lb, test_ll = sess.run(
[eval_lower_bound, eval_log_likelihood],
feed_dict={x: test_x_batch}
)
test_lbs.append(test_lb)
test_lls.append(test_ll)
print('>> Test lower bound = {}'.format(np.mean(test_lbs)))
print('>> Test log likelihood = {}'.format(np.mean(test_lls)))
sv.stop()
我已经尝试纠正我的代码好几天了,但我所有的努力都失败了。寻求你的帮助!
答案 0 :(得分:4)
此异常的最可能原因是tf.train.Supervisor
在后台运行的其中一项操作取决于tf.placeholder()
张量x
,但还不够为其提供价值的信息。
最可能的罪魁祸首是summary_op = tf.merge_all_summaries()
,因为库代码通常会汇总依赖于培训数据的值。为防止主管在后台收集摘要,请将summary_op=None
传递给tf.train.Supervisor
构造函数:
# Create a "supervisor", which oversees the training process.
sv = tf.train.Supervisor(is_chief=(FLAGS.task_index == 0),
logdir=LogDir,
init_op=init_op,
summary_op=None,
saver=saver,
global_step=global_step,
save_model_secs=600)
完成此操作后,您需要做出其他安排来收集摘要。最简单的方法是定期将summary_op
传递给sess.run()
,然后将结果传递给sv.summary_computed()
。
答案 1 :(得分:1)
碰到了类似的事情。主管因上述错误信息而失败。但是,由于我使用的是MonitoredTrainingSession而不是自制的Supervisor,因此我能够通过禁用默认摘要来解决问题。要禁用,您必须提供
save_summaries_secs=None,
save_summaries_steps=None,
到MonitoredTrainingSession的构造函数。事后,一切顺利! Code on Github
答案 2 :(得分:0)
我遇到了同样的问题。根据mrry的建议,我能够通过以下方式解决这个问题:
为了澄清,我没有使用mrry的建议 sess.run(summary_op)和sv.summary_computed(),但是将summary_op与其他操作一起运行,然后自己写出摘要。您可能还想要成为一名负责人的摘要写作。
基本上,你需要完全绕过Supervisor的摘要写作服务。看起来像Supervisor的令人惊讶的限制/错误,因为想要记录依赖于输入的东西(它位于占位符中)并不常见。例如,在我的网络(自动编码器)中,成本取决于输入。