我正在尝试过滤流数据,并根据我希望将数据保存到不同表的id列的值
我有两张桌子
如果id值是奇数,那么我想将记录保存到testTable_odd表,如果值是偶数,那么我想将记录保存到testTable_even。
这里棘手的部分是我的两个表有不同的列。尝试多种方式,考虑Scala函数的返回类型为[obj1,obj2],但我无法成功,任何指针都会非常感激。
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SaveMode
import org.apache.spark.streaming.Seconds
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.kafka.KafkaUtils
import com.datastax.spark.connector._
import kafka.serializer.StringDecoder
import org.apache.spark.rdd.RDD
import com.datastax.spark.connector.SomeColumns
import java.util.Formatter.DateTime
object StreamProcessor extends Serializable {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setMaster("local[2]").setAppName("StreamProcessor")
.set("spark.cassandra.connection.host", "127.0.0.1")
val sc = new SparkContext(sparkConf)
val ssc = new StreamingContext(sc, Seconds(2))
val sqlContext = new SQLContext(sc)
val kafkaParams = Map("metadata.broker.list" -> "localhost:9092")
val topics = args.toSet
val stream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](
ssc, kafkaParams, topics)
stream
.map {
case (_, msg) =>
val result = msgParseMaster(msg)
(result.id, result.data)
}.foreachRDD(rdd => if (!rdd.isEmpty) rdd.saveToCassandra("testKS","testTable",SomeColumns("id","data")))
}
}
ssc.start()
ssc.awaitTermination()
}
import org.json4s._
import org.json4s.native.JsonMethods._
case class wordCount(id: Long, data1: String, data2: String) extends serializable
implicit val formats = DefaultFormats
def msgParseMaster(msg: String): wordCount = {
val m = parse(msg).extract[wordCount]
return m
}
}
答案 0 :(得分:1)
我认为您只想使用过滤器功能两次。你可以做点什么
val evenstream = stream.map { case (_, msg) =>
val result = msgParseMaster(msg)
(result.id, result.data)
}.filter{ k =>
k._1 % 2 == 0
}
evenstream.foreachRDD{rdd=>
//Do something with even stream
}
val oddstream = stream.map { case (_, msg) =>
val result = msgParseMaster(msg)
(result.id, result.data)
}.filter{ k =>
k._1 % 2 == 1
}
oddstream.foreachRDD{rdd=>
//Do something with odd stream
}
当我在项目here上做了类似的事情时,如果你在第191行附近向下看,我会使用过滤器功能两次。在那里,我根据它们在0和1之间的值对元组进行分类和保存,所以随便检查一下。
答案 1 :(得分:1)
我已执行以下步骤。 1)从原始JSON字符串和案例类中提取细节 2)创建了超级JSON(其中包含两个过滤条件都需要的详细信息) 3)将JSON转换为DataFrame 4)对该JSON执行了select和where子句 5)保存到Cassandra