我目前正在尝试使用基于Python 2.7的API下载大量NY Times文章。为此,我能够重用我在网上找到的一段代码:
[code]from nytimesarticle import articleAPI
api = articleAPI('...')
articles = api.search( q = 'Brazil',
fq = {'headline':'Brazil', 'source':['Reuters','AP', 'The New York Times']},
begin_date = '20090101' )
def parse_articles(articles):
'''
This function takes in a response to the NYT api and parses
the articles into a list of dictionaries
'''
news = []
for i in articles['response']['docs']:
dic = {}
dic['id'] = i['_id']
if i['abstract'] is not None:
dic['abstract'] = i['abstract'].encode("utf8")
dic['headline'] = i['headline']['main'].encode("utf8")
dic['desk'] = i['news_desk']
dic['date'] = i['pub_date'][0:10] # cutting time of day.
dic['section'] = i['section_name']
if i['snippet'] is not None:
dic['snippet'] = i['snippet'].encode("utf8")
dic['source'] = i['source']
dic['type'] = i['type_of_material']
dic['url'] = i['web_url']
dic['word_count'] = i['word_count']
# locations
locations = []
for x in range(0,len(i['keywords'])):
if 'glocations' in i['keywords'][x]['name']:
locations.append(i['keywords'][x]['value'])
dic['locations'] = locations
# subject
subjects = []
for x in range(0,len(i['keywords'])):
if 'subject' in i['keywords'][x]['name']:
subjects.append(i['keywords'][x]['value'])
dic['subjects'] = subjects
news.append(dic)
return(news)
def get_articles(date,query):
'''
This function accepts a year in string format (e.g.'1980')
and a query (e.g.'Amnesty International') and it will
return a list of parsed articles (in dictionaries)
for that year.
'''
all_articles = []
for i in range(0,100): #NYT limits pager to first 100 pages. But rarely will you find over 100 pages of results anyway.
articles = api.search(q = query,
fq = {'headline':'Brazil','source':['Reuters','AP', 'The New York Times']},
begin_date = date + '0101',
end_date = date + '1231',
page = str(i))
articles = parse_articles(articles)
all_articles = all_articles + articles
return(all_articles)
Download_all = []
for i in range(2009,2010):
print 'Processing' + str(i) + '...'
Amnesty_year = get_articles(str(i),'Brazil')
Download_all = Download_all + Amnesty_year
import csv
keys = Download_all[0].keys()
with open('brazil-mentions.csv', 'wb') as output_file:
dict_writer = csv.DictWriter(output_file, keys)
dict_writer.writeheader()
dict_writer.writerows(Download_all)
没有最后一位(从&#34开始; ...导入csv"这似乎工作正常。如果我只是打印我的结果,(" print Download_all")我可以看到然而,它们以非结构化的方式运行。然而,运行实际的代码我得到的信息是:
File "C:\Users\xxx.yyy\AppData\Local\Continuum\Anaconda2\lib\csv.py", line 148, in _dict_to_list
+ ", ".join([repr(x) for x in wrong_fields]))
ValueError: dict contains fields not in fieldnames: 'abstract'
由于我是一个相当新手,我非常感谢您的帮助,指导我如何以结构化的方式将新闻文章下载到csv文件中。
提前多多感谢! 最好的问候
答案 0 :(得分:0)
你在哪里:
keys = Download_all[0].keys()
这将从第一篇文章的字典中获取CSV的列标题。问题是文章词典并不都具有相同的键,因此当您到达第一个具有额外abstract
键的词典时,它会失败。
看起来你会遇到abstract
和snippet
的问题,如果它们存在于回复中,它们只会添加到词典中。
您需要使keys
等于所有可能键的超集:
keys = Download_all[0].keys() + ['abstract', 'snippet']
或者,确保每个字典都有每个字段的值:
def parse_articles(articles):
...
if i['abstract'] is not None:
dic['abstract'] = i['abstract'].encode("utf8")
else:
dic['abstract'] = ""
...
if i['snippet'] is not None:
dic['snippet'] = i['snippet'].encode("utf8")
else:
dic['snippet'] = ""