我想删除共享2D数组中元素的行。例如:
array = [0 1]
[2 3]
[4 0]
[0 4]
filtered_array = [2 3]
编辑:列位置无关紧要
答案 0 :(得分:2)
这是使用NumPy broadcasting
-
def filter_rows(arr):
# Detect matches along same columns for both cols
samecol_mask1 = arr[:,None,0] == arr[:,0]
samecol_mask2 = arr[:,None,1] == arr[:,1]
samecol_mask = np.triu(samecol_mask1 | samecol_mask2,1)
# Detect matches across the two cols
diffcol_mask = arr[:,None,0] == arr[:,1]
# Get the combined matching mask
mask = samecol_mask | diffcol_mask
# Get the indices of the mask which gives us the row IDs that have matches
# across either same or different columns. Delete those rows for output.
dup_rowidx = np.unique(np.argwhere(mask))
return np.delete(arr,dup_rowidx,axis=0)
示例运行以展示各种方案
案例#1:跨越相同和不同列的多个匹配
In [313]: arr
Out[313]:
array([[0, 1],
[2, 3],
[4, 0],
[0, 4]])
In [314]: filter_rows(arr)
Out[314]: array([[2, 3]])
案例#2:沿着相同列匹配
In [319]: arr
Out[319]:
array([[ 0, 1],
[ 2, 3],
[ 8, 10],
[ 0, 4]])
In [320]: filter_rows(arr)
Out[320]:
array([[ 2, 3],
[ 8, 10]])
案例#3:沿不同列匹配
In [325]: arr
Out[325]:
array([[ 0, 1],
[ 2, 3],
[ 8, 10],
[ 7, 0]])
In [326]: filter_rows(arr)
Out[326]:
array([[ 2, 3],
[ 8, 10]])
案例#4:同一行中的匹配
In [331]: arr
Out[331]:
array([[ 0, 1],
[ 3, 3],
[ 8, 10],
[ 7, 0]])
In [332]: filter_rows(arr)
Out[332]: array([[ 8, 10]])
答案 1 :(得分:1)
只是@Divakar令人印象深刻的解决方案的替代品。这种方法在某种程度上更糟(尤其是效率),但对于非numpy-gurus来说可能更容易理解。
import numpy as np
def filter_(x):
unique = np.unique(x) # 1
unique_mapper = [np.where(x == z)[0] for z in unique] # 2
filtered_unique_mapper = list(map(lambda x: x if len(x) > 1 else [], unique_mapper)) # 3
all = np.concatenate(filtered_unique_mapper) # 4
to_delete = np.unique(all) # 5
return np.delete(x, all, axis=0)
# 1 get global unique values
# 2 for each unique value: get all rows with this value
# -> multiple entries for one unique value: row's collide!
# 3 remove entries from above, if only <= 1 rows hold that unique value
# 4 collect all rows, which collided somehow
# 5 remove multiple entries from above