我有一个TSV文件,第一行是标题。我想从这个文件创建一个JavaPairRDD。目前,我正在使用以下代码:
myValue
我想知道是否有办法让javaSparkContext直接读取并处理文件,而不是将操作分成两部分。
编辑:这不是How do I convert csv file to rdd的重复,因为我正在寻找Java中的答案,而不是Scala。
答案 0 :(得分:3)
使用https://github.com/databricks/spark-csv
import org.apache.spark.sql.SQLContext
SQLContext sqlContext = new SQLContext(sc);
DataFrame df = sqlContext.read()
.format("com.databricks.spark.csv")
.option("inferSchema", "true")
.option("header", "true")
.option("delimiter","\t")
.load("cars.csv");
df.select("year", "model").write()
.format("com.databricks.spark.csv")
.option("header", "true")
.save("newcars.csv");
答案 1 :(得分:1)
尝试以下代码来读取CSV文件并创建JavaPairRDD。
public class SparkCSVReader {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("CSV Reader");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> allRows = sc.textFile("c:\\temp\\test.csv");//read csv file
String header = allRows.first();//take out header
JavaRDD<String> filteredRows = allRows.filter(row -> !row.equals(header));//filter header
JavaPairRDD<String, MyCSVFile> filteredRowsPairRDD = filteredRows.mapToPair(parseCSVFile);//create pair
filteredRowsPairRDD.foreach(data -> {
System.out.println(data._1() + " ### " + data._2().toString());// print row and object
});
sc.stop();
sc.close();
}
private static PairFunction<String, String, MyCSVFile> parseCSVFile = (row) -> {
String[] fields = row.split(",");
return new Tuple2<String, MyCSVFile>(row, new MyCSVFile(fields[0], fields[1], fields[2]));
};
}
您也可以使用Databricks spark-csv(https://github.com/databricks/spark-csv)。 spark-csv也包含在Spark 2.0.0中。
答案 2 :(得分:0)
我是uniVocity-parsers的作者,并且无法帮助你解决问题,但我相信这样的事情对您有用:
parserSettings.setHeaderExtractionEnabled(true); //captures the header row
parserSettings.setProcessor(new AbstractRowProcessor(){
@Override
public void rowProcessed(String[] row, ParsingContext context) {
String[] headers = context.headers() //not sure if you need them
JavaPairRDD<String, MyObject> myObjectRDD = javaSparkContext
.mapToPair(row -> new Tuple2<>(row[0], myObjectFromArray(row)));
//process your stuff.
}
});
如果要对每行的处理进行并行处理,可以包装ConcurrentRowProcessor
:
parserSettings.setProcessor(new ConcurrentRowProcessor(new AbstractRowProcessor(){
@Override
public void rowProcessed(String[] row, ParsingContext context) {
String[] headers = context.headers() //not sure if you need them
JavaPairRDD<String, MyObject> myObjectRDD = javaSparkContext
.mapToPair(row -> new Tuple2<>(row[0], myObjectFromArray(row)));
//process your stuff.
}
}, 1000)); //1000 rows loaded in memory.
然后调用解析:
new TsvParser(parserSettings).parse(myFile);
希望这有帮助!
答案 3 :(得分:0)
Apache Spark 2.x有内置的csv阅读器,所以你不必使用https://github.com/databricks/spark-csv
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
/**
*
* @author cpu11453local
*/
public class Main {
public static void main(String[] args) {
SparkSession spark = SparkSession.builder()
.master("local")
.appName("meowingful")
.getOrCreate();
Dataset<Row> df = spark.read()
.option("header", "true")
.option("delimiter","\t")
.csv("hdfs://127.0.0.1:9000/data/meow_data.csv");
df.show();
}
}
maven档案pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.meow.meowingful</groupId>
<artifactId>meowingful</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
</properties>
<dependencies>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core_2.11 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.2.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.2.0</version>
</dependency>
</dependencies>
</project>