我试图将文件绘制到2个数字的8个子图上。我正在使用for循环和枚举运算符,以及axarray来执行此操作。 我几乎完成了最后一步(使用axarray),但需要指导如何完成它。 这是我的代码:
'import matplotlib.pyplot as plt
import parse_gctoo
import glob
f, ax1 = plt.subplots()
def histo_plotter(file, plot_title, ax):
# read in file as string
GCT_object = parse_gctoo.parse(file)
# for c in range(9):
# print type(GCT_object.data_df.iloc[0][c])
# computing median of rows in data_df
# gene_medians = GCT_object.data_df.quantile(q=0.5,axis=1)
# plot_title = "Gene expression levels for {}".format(cell)
if plot_title == "ZSPCQNORM":
gene_means = GCT_object.data_df.mean(axis=1)
#making histogram of means
ax.hist(gene_means)
plt.title("MeanGeneExpressionZSPCQNORM")
plt.xlabel("MedianGeneExpression")
plt.ylabel("Count")
elif plot_title == "QNORM":
gene_medians = GCT_object.data_df.median(axis=1)
#making histogram of medians
ax.hist(gene_medians)
plt.title("MedianGeneExpressionQNORM")
plt.xlabel("MedianGeneExpression")
plt.ylabel("Count")
plt.show()
f.savefig("hist_example1.png")
# plt.ylim(-1, 1)
# plt.xlim(-1,1)
# histo_plotter("/Users/eibelman/Desktop/ZSCOREDATA- CXA061_SKL_48H_X1_B29_ZSPCQNORM_n372x978.gct.txt", "ZSPCQNORM", ax1)
# histo_plotter("/Users/eibelman/Desktop/NewLJP005_A375_24H_X2_B19_QNORM_n373x978.gct.txt", "QNORM", ax1)
#########
# Create list of x2 LJP005 cell line files
z_list = glob.glob("/Volumes/cmap_obelix/pod/custom/LJP/roast/LJP005_[A375, A549, BT20, HA1E, HC515, HEPG2, HS578T, HT29]*X2*/zs/*ZSPCQNORM*.gct")
q_list = glob.glob("/Volumes/cmap_obelix/pod/custom/LJP/roast/LJP005_[A375, A549, BT20, HA1E, HC515, HEPG2, HS578T, HT29]*_X2_*/*_QNORM_*.gct")
# for loop which allows plotting multiple files in a single figure
f, axarray = plt.subplots(2, 4)
for n, single_q in enumerate(q_list):
# axarray = plt.subplot(len(q_list), 1, n+1)
axarray = histo_plotter(n, "QNORM", ax1)
# axarray[n].plot()
plt.show()
# f, axarray = plt.subplots(2, 4)
# for n, single_z in enumerate(z_list):
# # ax = plt.subplot(len(z_list), 1, n+1)
# histo_plotter(single_z, "ZSPCQNORM", ax1)'
答案 0 :(得分:1)
首先,在循环开始时调用plt.figure()
就足够了。
其次,您需要正确使用subplot
。这是subplot
函数的文档:
典型的呼叫签名:
subplot(nrows,ncols,plot_number)其中使用nrows和ncols 在概念上将图分成nrows * ncols子轴,和 plot_number用于标识此特定子图 功能是在名义网格内创建。 plot_number从 1,首先跨行递增,最多为nrows * ncols。
修改强>
如果你想为每个文件添加一个新的数字,那么在每次迭代时你都应该在没有参数的情况下调用plt.figure()
。
答案 1 :(得分:1)
你可以试试这个:
import matplotlib.pyplot as plt
plt.figure()
for n, single_q in enumerate(q_list):
ax = plt.subplot(len(q_list), 1, n+1)
GCT_object = parse_gctoo.parse(single_q)
gene_medians = GCT_object.data_df.median(axis=1)
plt.hist(gene_medians)
# tweak title, labels, etc.
plt.show()
解释
enumerate
遍历项目(s
),同时返回其索引(n
); subplot(size, column, row)
需要以下参数:size
是图中子图的总数,row
和column
确定当前图的位置。 n+1
是必要的,以便将绘图放在绘图网格中的正确位置;