将列中的字符串转换为分类变量

时间:2016-07-30 19:12:33

标签: python string pandas statistics categorical-data

我想将填充字符串的列转换为分类变量,以便我可以运行统计信息。但是,我对这个转换有困难,因为我对Python很新。

以下是我的代码示例:

# Open txt file and provide column names
data = pd.read_csv('sample.txt', sep="\t", header = None,
                   names = ["Label", "I1", "I2", "C1", "C2"])
# Convert I1 and I2 to continuous, numeric variables
data = data.apply(lambda x: pd.to_numeric(x, errors='ignore'))
# Convert Label, C1, and C2 to categorical variables
data["Label"] = pd.factorize(data.Label)[0]
data["C1"] = pd.factorize(data.C1)[0]
data["C2"] = pd.factorize(data.C2)[0]

# Split the predictors into training/testing sets
predictors = data.drop('Label', 1)
msk = np.random.rand(len(predictors)) < 0.8
predictors_train = predictors[msk]
predictors_test = predictors[~msk]

# Split the response variable into training/testing sets
response = data['Label']
ksm = np.random.rand(len(response)) < 0.8
response_train = response[ksm]
response_test = response[~ksm]

# Logistic Regression
from sklearn import linear_model
# Create logistic regression object
lr = linear_model.LogisticRegression()

# Train the model using the training sets
lr.fit(predictors_train, response_train)

但是,我会收到此错误:

ValueError: could not convert string to float: 'ec26ad35'

ec26ad35值是分类变量C1C2中的字符串。我不确定发生了什么:我没有将字符串转换为分类变量吗?为什么错误说它们仍然是字符串?

使用data.head(30),这是我的数据:

>> data[["Label", "I1", "I2", "C1", "C2"]].head(30)
    Label   I1   I2        C1        C2
0       0  1.0    1  68fd1e64  80e26c9b
1       0  2.0    0  68fd1e64  f0cf0024
2       0  2.0    0  287e684f  0a519c5c
3       0  NaN  893  68fd1e64  2c16a946
4       0  3.0   -1  8cf07265  ae46a29d
5       0  NaN   -1  05db9164  6c9c9cf3
6       0  NaN    1  439a44a4  ad4527a2
7       1  1.0    4  68fd1e64  2c16a946
8       0  NaN   44  05db9164  d833535f
9       0  NaN   35  05db9164  510b40a5
10      0  NaN    2  05db9164  0468d672
11      0  0.0    6  05db9164  9b5fd12f
12      1  0.0   -1  241546e0  38a947a1
13      1  NaN    2  be589b51  287130e0
14      0  0.0   51  5a9ed9b0  80e26c9b
15      0  NaN    2  05db9164  bc6e3dc1
16      1  1.0  987  68fd1e64  38d50e09
17      0  0.0    1  8cf07265  7cd19acc
18      0  0.0   24  05db9164  f0cf0024
19      0  7.0  102  3c9d8785  b0660259
20      1  NaN   47  1464facd  38a947a1
21      0  0.0    1  05db9164  09e68b86
22      0  NaN    0  05db9164  38a947a1
23      0  NaN    9  05db9164  08d6d899
24      0  0.0    1  5a9ed9b0  3df44d94
25      0  NaN    4  5a9ed9b0  09e68b86
26      1  0.0    1  8cf07265  942f9a8d
27      1  0.0   20  68fd1e64  38a947a1
28      1  0.0   78  68fd1e64  1287a654
29      1  3.0    0  05db9164  90081f33

编辑:在将数据帧拆分为训练和测试数据集后,包含错误来输入丢失的数据。不知道这里发生了什么。

# Impute missing data
>> from sklearn.preprocessing import Imputer
>> imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
>> predictors_train = imp.fit_transform(predictors_train)
TypeError: float() argument must be a string or a number, not 'function'

1 个答案:

答案 0 :(得分:2)

正如@ayhan在评论中指出的那样,你可能想在这里使用dummy variables。这是因为您的数据似乎不太可能在文本标签中存在任何排序。

这可以通过pandas.get_dummies轻松完成,例如:

pd.get_dummies(df.C1)

请注意,这会返回常规的DataFrame:

>>> pd.get_dummies(df.C1).columns
Index([u'05db9164', u'1464facd', u'241546e0', u'287e684f', u'3c9d8785',
     u'439a44a4', u'5a9ed9b0', u'68fd1e64', u'8cf07265', u'be589b51'],
     dtype='object')

您可能希望将其用于水平concat,因此。

如果您实际上想要将标签转换为数字(似乎不太可能),您可能会看sklearn.preprocessing.LabelEncoder