训练分类器以在将URL输入其中时预测新闻类别
目前:对于每个输入,我训练分类器然后返回输出,因此我失去了训练有素的分类器
预期:一旦我训练了分类器,我应该能够在需要时从内存中调用此分类器
任何对此的亮光都将受到高度赞赏。
PS:NLP的业余爱好者
答案 0 :(得分:1)
是that你想要的是什么?
来自docs的例子:
>>> from sklearn import svm
>>> from sklearn import datasets
>>> clf = svm.SVC()
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> clf.fit(X, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
>>> import pickle
>>> s = pickle.dumps(clf) # <-- save/dump classifier to disk
>>> clf2 = pickle.loads(s) # <-- read/load saved classifier from disk to a new variable
>>> clf2.predict(X[0:1]) # <-- use loaded (from disk) classifier
array([0])
>>> y[0]
0
答案 1 :(得分:0)
您可以使用 Pickle / cPickle 来转储/加载您的模型。
import pickle
#Some COde
model_path = "classifier.model"
if not os.path.exists(model_path):
#Some Code
classifier = # Some Classifer
pickle.dump(classifier, open(model_path, "wb" ))
else:
classifier = pickle.load(open(model_path, "rb"))
#Some Code
有关详细信息:Pickle / cPickle