我实现了一个函数,通过使用reduction来查找数组的总和,我的数组有32 * 32个元素,其值为0 ... 1023。 我的预期总和值是523776,但我的结果是15872,这是错误的。 这是我的代码:
#include <stdio.h>
#include <cuda.h>
#define w 32
#define h 32
#define N w*h
__global__ void reduce(int *g_idata, int *g_odata);
void fill_array (int *a, int n);
int main( void ) {
int a[N], b[N]; // copies of a, b, c
int *dev_a, *dev_b; // device copies of a, b, c
int size = N * sizeof( int ); // we need space for 512 integers
// allocate device copies of a, b, c
cudaMalloc( (void**)&dev_a, size );
cudaMalloc( (void**)&dev_b, size );
fill_array( a, N );
// copy inputs to device
cudaMemcpy( dev_a, a, size, cudaMemcpyHostToDevice );
cudaMemcpy( dev_b, b, size, cudaMemcpyHostToDevice );
dim3 blocksize(16,16);
dim3 gridsize;
gridsize.x=(w+blocksize.x-1)/blocksize.x;
gridsize.y=(h+blocksize.y-1)/blocksize.y;
reduce<<<gridsize, blocksize>>>(dev_a, dev_b);
// copy device result back to host copy of c
cudaMemcpy( b, dev_b, sizeof( int ) , cudaMemcpyDeviceToHost );
printf("Reduced sum of Array elements = %d \n", b[0]);
cudaFree( dev_a );
cudaFree( dev_b );
return 0;
}
__global__ void reduce(int *g_idata, int *g_odata) {
__shared__ int sdata[256];
// each thread loads one element from global to shared mem
int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[threadIdx.x] = g_idata[i];
__syncthreads();
// do reduction in shared mem
for (int s=1; s < blockDim.x; s *=2)
{
int index = 2 * s * threadIdx.x;;
if (index < blockDim.x)
{
sdata[index] += sdata[index + s];
}
__syncthreads();
}
// write result for this block to global mem
if (threadIdx.x == 0)
atomicAdd(g_odata,sdata[0]);
}
// CPU function to generate a vector of random integers
void fill_array (int *a, int n)
{
for (int i = 0; i < n; i++)
a[i] = i;
}
答案 0 :(得分:3)
您的代码中至少存在2个问题
您正在对atomicAdd
数组中的第一个元素执行dev_b
,但您没有将该元素初始化为已知值(即0)。当然,在运行内核之前,您正在将b
复制到dev_b
,但由于您尚未将b
初始化为任何已知值,因此无效。如果你想到的话,数组b
不会在C或C ++中自动初始化为零。我们可以通过将b[0]
设置为零来解决此问题,然后再将b
复制到dev_b
。
编写缩减内核是为了处理1D情况(即使用的唯一线程索引是基于.x
值的1D线程索引),但是您正在启动具有2D线程块和网格的内核。这种不匹配将无法正常工作,我们要么需要启动一维线程块和网格,要么重新编写内核以使用二维索引(即.x
和.y
)。我选择了前者(1D)。
这是一个工作示例,对代码进行了这些更改,似乎产生了正确的结果:
$ cat t1218.cu
#include <stdio.h>
#define w 32
#define h 32
#define N w*h
__global__ void reduce(int *g_idata, int *g_odata);
void fill_array (int *a, int n);
int main( void ) {
int a[N], b[N]; // copies of a, b, c
int *dev_a, *dev_b; // device copies of a, b, c
int size = N * sizeof( int ); // we need space for 512 integers
// allocate device copies of a, b, c
cudaMalloc( (void**)&dev_a, size );
cudaMalloc( (void**)&dev_b, size );
fill_array( a, N );
b[0] = 0; //initialize the first value of b to zero
// copy inputs to device
cudaMemcpy( dev_a, a, size, cudaMemcpyHostToDevice );
cudaMemcpy( dev_b, b, size, cudaMemcpyHostToDevice );
dim3 blocksize(256); // create 1D threadblock
dim3 gridsize(N/blocksize.x); //create 1D grid
reduce<<<gridsize, blocksize>>>(dev_a, dev_b);
// copy device result back to host copy of c
cudaMemcpy( b, dev_b, sizeof( int ) , cudaMemcpyDeviceToHost );
printf("Reduced sum of Array elements = %d \n", b[0]);
printf("Value should be: %d \n", ((N-1)*(N/2)));
cudaFree( dev_a );
cudaFree( dev_b );
return 0;
}
__global__ void reduce(int *g_idata, int *g_odata) {
__shared__ int sdata[256];
// each thread loads one element from global to shared mem
// note use of 1D thread indices (only) in this kernel
int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[threadIdx.x] = g_idata[i];
__syncthreads();
// do reduction in shared mem
for (int s=1; s < blockDim.x; s *=2)
{
int index = 2 * s * threadIdx.x;;
if (index < blockDim.x)
{
sdata[index] += sdata[index + s];
}
__syncthreads();
}
// write result for this block to global mem
if (threadIdx.x == 0)
atomicAdd(g_odata,sdata[0]);
}
// CPU function to generate a vector of random integers
void fill_array (int *a, int n)
{
for (int i = 0; i < n; i++)
a[i] = i;
}
$ nvcc -o t1218 t1218.cu
$ cuda-memcheck ./t1218
========= CUDA-MEMCHECK
Reduced sum of Array elements = 523776
Value should be: 523776
========= ERROR SUMMARY: 0 errors
$
注意:
内核和您编写的代码取决于N
是线程块大小的精确倍数(256)。对于这种情况,这是令人满意的,但如果不是这样,事情就会破裂。
我没有看到proper cuda error checking的任何证据。它不会在这里发现任何东西,但它的良好做法。作为快速测试,请像我在此处一样使用cuda-memcheck
运行您的代码。