library(magrittr)
library(dplyr)
V1 <- c("A","A","A","A","A","A","B","B","B","B", "B","B","C","C","C","C","C","C","D","D","D","D","D","D","E","E","E","E","E","E")
V2 <- c("A","B","C","D","E","F","A","B","C","D","E","F","A","B","C","D","E","F","A","B","C","D","E","F","A","B","C","D","E","F")
cor <- c(1,0.8,NA,NA,NA,NA,0.8,1,NA,NA,NA,NA,NA,NA,1,0.8,NA,NA,NA,NA,0.8,1,NA,NA,NA,NA,NA,NA,1,0.9)
df <- data.frame(V1,V2,cor)
# exclude rows where cor=NA
df <- df[complete.cases(df)==TRUE,]
这是完整的数据帧,cor = NA表示小于0.8的相关性
df
V1 V2 cor
1 A A 1.0
2 A B 0.8
7 B A 0.8
8 B B 1.0
15 C C 1.0
16 C D 0.8
21 D C 0.8
22 D D 1.0
29 E E 1.0
30 E F 0.9
在上面的df中,F不在V1中,意味着F不感兴趣
所以这里我删除了V2 = F的行(更一般地说,V2等于不在V1中的值)
V1.LIST <- unique(df$V1)
df.gp <- df[which(df$V2 %in% V1.LIST),]
df.gp
V1 V2 cor
1 A A 1.0
2 A B 0.8
7 B A 0.8
8 B B 1.0
15 C C 1.0
16 C D 0.8
21 D C 0.8
22 D D 1.0
29 E E 1.0
现在,df.gp是我需要处理的数据集
我将未使用的级别丢弃在V2中(在示例中为F)
df.gp$V2 <- droplevels(df.gp$V2)
我不想排除自相关变量,以防某些V1与其他变量无关,我想将它们分别放在一个单独的组中
通过查看cor,A和B是相关的,C和D是相关的,E本身属于一个组。
因此,此处的示例应该有三个组。
答案 0 :(得分:0)
我看到这一点,通过将数据直接用于data.frame
,您可能会遇到困难。我冒昧地将它转换回矩阵。
library(reshape2)
cormat <- as.matrix(dcast(data = df,formula = V1~V2))[,-1]
row.names(cormat) <- colnames(cormat)[-length(colnames(cormat))]
cormat
在我获得相关矩阵后,很容易看出哪些索引或非NA值与其他变量共享。
a <- apply(cormat, 1, function(x) which(!is.na(x)))
a <- data.frame(t(a))
a$var <- row.names(a)
row.names(a) <- NULL
a
X1 X2 var
1 1 2 A
2 1 2 B
3 3 4 C
4 3 4 D
5 5 6 E
现在X1
或X2
确定您的唯一分组。
假设我们已经选择cor >= a
中的行,上面的脚本是一种可能的解决方案,其中a
是上述问题中的阈值为0.8。
通过使用cutree
和hclust
,我们可以将脚本中的阈值(即h = 0.8)设置为打击。
cor.gp <- data.frame(cor.gp =
cutree(hclust(1 - as.dist(xtabs(cor ~ V1 + V2, df.gp))), h = 0.8))