我编写了一个特殊的“impute”函数,该函数根据特定的列名替换具有mean()或mode()的缺失(NA)值的列值。
输入数据帧是400,000+行并且它的转速很慢,如何使用lapply()或apply()来加速插补部分。
这是我希望使用START OPTIMIZE& amp;结束优化:
specialImpute <- function(inputDF)
{
discoveredDf <- data.frame(STUDYID_SUBJID=character(), stringsAsFactors=FALSE)
dfList <- list()
counter = 1;
Whilecounter = nrow(inputDF)
#for testing just do 10 iterations,i = 10;
while (Whilecounter >0)
{
studyid_subjid=inputDF[Whilecounter,"STUDYID_SUBJID"]
vect = which(discoveredDf$STUDYID_SUBJID == studyid_subjid)
#was discovered and subset before
if (!is.null(vect))
{
#not subset before
if (length(vect)<1)
{
#subset the dataframe base on regex inputDF$STUDYID_SUBJID
df <- subset(inputDF, regexpr(studyid_subjid, inputDF$STUDYID_SUBJID) > 0)
#START OPTIMIZE
for (i in nrow(df))
{
#impute , add column mean & add to list
#apply(df[,c("y1","y2","y3","etc..")],2,function(x){x[is.na(x)] =mean(x, na.rm=TRUE)})
if (is.na(df[i,"y1"])) {df[i,"y1"] = mean(df[,"y1"], na.rm = TRUE)}
if (is.na(df[i,"y2"])) {df[i,"y2"] =mean(df[,"y2"], na.rm = TRUE)}
if (is.na(df[i,"y3"])) {df[i,"y3"] =mean(df[,"y3"], na.rm = TRUE)}
#impute using mean for CONTINUOUS variables
if (is.na(df[i,"COVAR_CONTINUOUS_2"])) {df[i,"COVAR_CONTINUOUS_2"] =mean(df[,"COVAR_CONTINUOUS_2"], na.rm = TRUE)}
if (is.na(df[i,"COVAR_CONTINUOUS_3"])) {df[i,"COVAR_CONTINUOUS_3"] =mean(df[,"COVAR_CONTINUOUS_3"], na.rm = TRUE)}
if (is.na(df[i,"COVAR_CONTINUOUS_4"])) {df[i,"COVAR_CONTINUOUS_4"] =mean(df[,"COVAR_CONTINUOUS_4"], na.rm = TRUE)}
if (is.na(df[i,"COVAR_CONTINUOUS_5"])) {df[i,"COVAR_CONTINUOUS_5"] =mean(df[,"COVAR_CONTINUOUS_5"], na.rm = TRUE)}
if (is.na(df[i,"COVAR_CONTINUOUS_6"])) {df[i,"COVAR_CONTINUOUS_6"] =mean(df[,"COVAR_CONTINUOUS_6"], na.rm = TRUE)}
if (is.na(df[i,"COVAR_CONTINUOUS_7"])) {df[i,"COVAR_CONTINUOUS_7"] =mean(df[,"COVAR_CONTINUOUS_7"], na.rm = TRUE)}
if (is.na(df[i,"COVAR_CONTINUOUS_10"])) {df[i,"COVAR_CONTINUOUS_10"] =mean(df[,"COVAR_CONTINUOUS_10"], na.rm = TRUE)}
if (is.na(df[i,"COVAR_CONTINUOUS_14"])) {df[i,"COVAR_CONTINUOUS_14"] =mean(df[,"COVAR_CONTINUOUS_14"], na.rm = TRUE)}
if (is.na(df[i,"COVAR_CONTINUOUS_30"])) {df[i,"COVAR_CONTINUOUS_30"] =mean(df[,"COVAR_CONTINUOUS_30"], na.rm = TRUE)}
#impute using mode ordinal & nominal values
if (is.na(df[i,"COVAR_ORDINAL_1"])) {df[i,"COVAR_ORDINAL_1"] =Mode(df[,"COVAR_ORDINAL_1"])}
if (is.na(df[i,"COVAR_ORDINAL_2"])) {df[i,"COVAR_ORDINAL_2"] =Mode(df[,"COVAR_ORDINAL_2"])}
if (is.na(df[i,"COVAR_ORDINAL_3"])) {df[i,"COVAR_ORDINAL_3"] =Mode(df[,"COVAR_ORDINAL_3"])}
if (is.na(df[i,"COVAR_ORDINAL_4"])) {df[i,"COVAR_ORDINAL_4"] =Mode(df[,"COVAR_ORDINAL_4"])}
#nominal
if (is.na(df[i,"COVAR_NOMINAL_1"])) {df[i,"COVAR_NOMINAL_1"] =Mode(df[,"COVAR_NOMINAL_1"])}
if (is.na(df[i,"COVAR_NOMINAL_2"])) {df[i,"COVAR_NOMINAL_2"] =Mode(df[,"COVAR_NOMINAL_2"])}
if (is.na(df[i,"COVAR_NOMINAL_3"])) {df[i,"COVAR_NOMINAL_3"] =Mode(df[,"COVAR_NOMINAL_3"])}
if (is.na(df[i,"COVAR_NOMINAL_4"])) {df[i,"COVAR_NOMINAL_4"] =Mode(df[,"COVAR_NOMINAL_4"])}
if (is.na(df[i,"COVAR_NOMINAL_5"])) {df[i,"COVAR_NOMINAL_5"] =Mode(df[,"COVAR_NOMINAL_5"])}
if (is.na(df[i,"COVAR_NOMINAL_6"])) {df[i,"COVAR_NOMINAL_6"] =Mode(df[,"COVAR_NOMINAL_6"])}
if (is.na(df[i,"COVAR_NOMINAL_7"])) {df[i,"COVAR_NOMINAL_7"] =Mode(df[,"COVAR_NOMINAL_7"])}
if (is.na(df[i,"COVAR_NOMINAL_8"])) {df[i,"COVAR_NOMINAL_8"] =Mode(df[,"COVAR_NOMINAL_8"])}
}#for
#END OPTIMIZE
dfList[[counter]] <- df
#add to discoveredDf since already substed
discoveredDf[nrow(discoveredDf)+1,]<- c(studyid_subjid)
counter = counter +1;
#for debugging to check progress
if (counter %% 100 == 0)
{
print(counter)
}
}
}
Whilecounter = Whilecounter -1;
}#end while
return (dfList)
}
由于
答案 0 :(得分:8)
只要您在每个列上使用矢量化函数,就可以通过多种方式改进性能。目前,您正在遍历每一行,然后分别处理每一列,这真的会让您失望。另一个改进是概括代码,因此您不必为每个变量键入新行。在下面给出的例子中,这是处理的,因为连续变量是数字,而分类是因子。
要直接回答,您可以使用以下内容(尽管修复变量名称)替换要优化的代码,前提是您的数字变量是数字,而序数/分类不是(例如,因子):
impute <- function(x) {
if (is.numeric(x)) { # If numeric, impute with mean
x[is.na(x)] <- mean(x, na.rm = TRUE)
} else { # mode otherwise
x[is.na(x)] <- names(which.max(table(x)))
}
x
}
# Correct cols_to_impute with names of your variables to be imputed
# e.g., c("COVAR_CONTINUOUS_2", "COVAR_NOMINAL_3", ...)
cols_to_impute <- names(df) %in% c("names", "of", "columns")
library(purrr)
df[, cols_to_impute] <- dmap(df[, cols_to_impute], impute)
以下是五种方法的详细比较:
for
迭代行的原始方法;然后单独处理每一列。for
循环。lapply()
。sapply()
。dmap()
包中的purrr
。新方法全部按照列>>对数据框进行迭代,并使用名为impute
的向量化函数,该函数将带有均值的向量中的缺失值(如果是数字)或模式(否则)。否则,它们的差异相对较小(除了sapply()
,你会看到),但有趣的是检查。
以下是我们将使用的实用功能:
# Function to simulate a data frame of numeric and factor variables with
# missing values and `n` rows
create_dat <- function(n) {
set.seed(13)
data.frame(
con_1 = sample(c(10:20, NA), n, replace = TRUE), # continuous w/ missing
con_2 = sample(c(20:30, NA), n, replace = TRUE), # continuous w/ missing
ord_1 = sample(c(letters, NA), n, replace = TRUE), # ordinal w/ missing
ord_2 = sample(c(letters, NA), n, replace = TRUE) # ordinal w/ missing
)
}
# Function that imputes missing values in a vector with mean (if numeric) or
# mode (otherwise)
impute <- function(x) {
if (is.numeric(x)) { # If numeric, impute with mean
x[is.na(x)] <- mean(x, na.rm = TRUE)
} else { # mode otherwise
x[is.na(x)] <- names(which.max(table(x)))
}
x
}
现在,每种方法的包装函数:
# Original approach
func0 <- function(d) {
for (i in 1:nrow(d)) {
if (is.na(d[i, "con_1"])) d[i,"con_1"] <- mean(d[,"con_1"], na.rm = TRUE)
if (is.na(d[i, "con_2"])) d[i,"con_2"] <- mean(d[,"con_2"], na.rm = TRUE)
if (is.na(d[i,"ord_1"])) d[i,"ord_1"] <- names(which.max(table(d[,"ord_1"])))
if (is.na(d[i,"ord_2"])) d[i,"ord_2"] <- names(which.max(table(d[,"ord_2"])))
}
return(d)
}
# for loop operates directly on d
func1 <- function(d) {
for(i in seq_along(d)) {
d[[i]] <- impute(d[[i]])
}
return(d)
}
# Use lapply()
func2 <- function(d) {
lapply(d, function(col) {
impute(col)
})
}
# Use sapply()
func3 <- function(d) {
sapply(d, function(col) {
impute(col)
})
}
# Use purrr::dmap()
func4 <- function(d) {
purrr::dmap(d, impute)
}
现在,我们将比较这些方法的性能,范围从10到100(非常小):
library(microbenchmark)
ns <- seq(10, 100, by = 10)
times <- sapply(ns, function(n) {
dat <- create_dat(n)
op <- microbenchmark(
ORIGINAL = func0(dat),
FOR_LOOP = func1(dat),
LAPPLY = func2(dat),
SAPPLY = func3(dat),
DMAP = func4(dat)
)
by(op$time, op$expr, function(t) mean(t) / 1000)
})
times <- t(times)
times <- as.data.frame(cbind(times, n = ns))
# Plot the results
library(tidyr)
library(ggplot2)
times <- gather(times, -n, key = "fun", value = "time")
pd <- position_dodge(width = 0.2)
ggplot(times, aes(x = n, y = time, group = fun, color = fun)) +
geom_point(position = pd) +
geom_line(position = pd) +
theme_bw()
很明显,原始方法比在每列上使用向量化函数impute
的新方法慢得多。那些新的差异呢?让我们提高样本量来检查:
ns <- seq(5000, 50000, by = 5000)
times <- sapply(ns, function(n) {
dat <- create_dat(n)
op <- microbenchmark(
FOR_LOOP = func1(dat),
LAPPLY = func2(dat),
SAPPLY = func3(dat),
DMAP = func4(dat)
)
by(op$time, op$expr, function(t) mean(t) / 1000)
})
times <- t(times)
times <- as.data.frame(cbind(times, n = ns))
times <- gather(times, -n, key = "fun", value = "time")
pd <- position_dodge(width = 0.2)
ggplot(times, aes(x = n, y = time, group = fun, color = fun)) +
geom_point(position = pd) +
geom_line(position = pd) +
theme_bw()
看起来sapply()
并不好(正如@Martin指出的那样)。这是因为sapply()
正在做额外的工作来将我们的数据转换成矩阵形状(我们不需要)。如果你在没有sapply()
的情况下自己运行,你会发现剩下的方法都非常可比。
因此,主要的性能改进是在每列上使用矢量化函数。我建议在开头使用dmap
,因为我一般都喜欢函数样式和purrr
包,但您可以轻松地替换您喜欢的任何方法。
除此之外,非常感谢@Martin提供了非常有用的评论,让我改进了这个答案!
答案 1 :(得分:1)
如果你打算使用看起来像矩阵的东西,那么使用矩阵而不是数据帧,因为索引到数据帧(就像它是一个矩阵)是非常昂贵的。您可能希望将数值提取到矩阵中以进行部分计算。这可以显着提高速度。
答案 2 :(得分:1)
使用data.table
这是一个非常简单快速的解决方案。
library(data.table)
# name of columns
cols <- c("a", "c")
# impute date
setDT(dt)[, (cols) := lapply(.SD, function(x) ifelse( is.na(x) & is.numeric(x), mean(x, na.rm = T),
ifelse( is.na(x) & is.character(x), names(which.max(table(x))), x))) , .SDcols = cols ]
我没有将此解决方案的性能与@Simon Jackson提供的解决方案进行比较,但这应该非常快。
set.seed(25)
dt <- data.table(a=c(1:5,NA,NA,1,1),
b=sample(1:15, 9, replace=TRUE),
c=LETTERS[c(1:6,NA,NA,1)])