我正在处理一个我正努力解决的查询问题。我有一个名字数据库。我要做的是弄清楚数据库中有多个名称与同一ID相关联的人,这些名称彼此非常相似:
ID Name
------------- ----------
123ABC Joe Smith
123ABC Joseph Smith
345XYZ Michael Johnson
345XYZ MikeJohnson
678LMN Suzyjones
678LMN Suzanne Mary Jones
因此,我希望构建一个可以识别这些人的查询。有人有任何建议或意见吗?显然,它可能非常棘手,因为我们不会处理直接的重复,而是小而微妙的变化。
答案 0 :(得分:0)
在ID匹配且名称不匹配的情况下进行自我加入:
select t1.ID, t1.NAME, t2.NAME
from your_table t1
join your_table t2
on t1.ID = t2.ID
and t1.NAME <> t2.NAME
答案 1 :(得分:0)
你可以通过多种方式实现这一目标,我建议你仔细阅读group by条款。
以下查询假设您的表中只有记录 如果ID附有名称。
;WITH CTE AS
(
SELECT ID
FROM <yourTable>
group by ID
HAVING COUNT(1) > 1
)
SELECT T.*
FROM CTE C
JOIN <yourTable> T
ON C.id - T.ID
如果同一个表中有多个具有相同名称的行,那么您只需要预先应用distinct子句。
答案 2 :(得分:0)
检查以下内容 - 应该适合你
在查询结尾处注意WHERE similarity > -1
- 通过设置值而不是-1
,您可以控制相似度阈值。越接近1,您想捕获的对越相似。接近0 - 更多对捕获!
SELECT ID, Name1, Name2, similarity FROM
JS( // input table
(
SELECT one.ID AS ID, one.Name AS Name1, two.Name AS Name2
FROM YourTable AS one
JOIN YourTable AS two ON one.ID = two.ID
HAVING Name1 < Name2
) ,
// input columns
ID, Name1, Name2,
// output schema
"[{name: 'ID', type:'string'},
{name: 'Name1', type:'string'},
{name: 'Name2', type:'string'},
{name: 'similarity', type:'float'}]
",
// function
"function(r, emit) {
var _extend = function(dst) {
var sources = Array.prototype.slice.call(arguments, 1);
for (var i=0; i<sources.length; ++i) {
var src = sources[i];
for (var p in src) {
if (src.hasOwnProperty(p)) dst[p] = src[p];
}
}
return dst;
};
var Levenshtein = {
/**
* Calculate levenshtein distance of the two strings.
*
* @param str1 String the first string.
* @param str2 String the second string.
* @return Integer the levenshtein distance (0 and above).
*/
get: function(str1, str2) {
// base cases
if (str1 === str2) return 0;
if (str1.length === 0) return str2.length;
if (str2.length === 0) return str1.length;
// two rows
var prevRow = new Array(str2.length + 1),
curCol, nextCol, i, j, tmp;
// initialise previous row
for (i=0; i<prevRow.length; ++i) {
prevRow[i] = i;
}
// calculate current row distance from previous row
for (i=0; i<str1.length; ++i) {
nextCol = i + 1;
for (j=0; j<str2.length; ++j) {
curCol = nextCol;
// substution
nextCol = prevRow[j] + ( (str1.charAt(i) === str2.charAt(j)) ? 0 : 1 );
// insertion
tmp = curCol + 1;
if (nextCol > tmp) {
nextCol = tmp;
}
// deletion
tmp = prevRow[j + 1] + 1;
if (nextCol > tmp) {
nextCol = tmp;
}
// copy current col value into previous (in preparation for next iteration)
prevRow[j] = curCol;
}
// copy last col value into previous (in preparation for next iteration)
prevRow[j] = nextCol;
}
return nextCol;
}
};
var the_Name1;
try {
the_Name1 = decodeURI(r.Name1).toLowerCase();
} catch (ex) {
the_Name1 = r.Name1.toLowerCase();
}
try {
the_Name2 = decodeURI(r.Name2).toLowerCase();
} catch (ex) {
the_Name2 = r.Name2.toLowerCase();
}
emit({ID: r.ID, Name1: the_Name1, Name2: the_Name2,
similarity: 1 - Levenshtein.get(the_Name1, the_Name2) / the_Name1.length});
}"
)
WHERE similarity > -1
ORDER BY similarity DESC
您可以使用以下示例进行测试
SELECT ID, Name1, Name2, similarity FROM
JS( // input table
(
SELECT one.ID AS ID, one.Name AS Name1, two.Name AS Name2
FROM (
SELECT ID, Name FROM
(SELECT '123ABC' AS ID, 'Joe Smith' AS Name),
(SELECT '123ABC' AS ID, 'Joseph Smith' AS Name),
(SELECT '345XYZ' AS ID, 'Michael Johnson' AS Name),
(SELECT '345XYZ' AS ID, 'MikeJohnson' AS Name),
(SELECT '678LMN' AS ID, 'Suzyjones' AS Name),
(SELECT '678LMN' AS ID, 'Suzanne Mary Jones' AS Name),
(SELECT 'AAA' AS ID, 'Jordan Tigani' AS Name),
(SELECT 'AAA' AS ID, 'Felipe Hoffa' AS Name),
(SELECT 'BBB' AS ID, 'Mikhail Berlyant' AS Name),
(SELECT 'BBB' AS ID, 'Michael Sheldon' AS Name),
) AS one
JOIN (
SELECT ID, Name FROM
(SELECT '123ABC' AS ID, 'Joe Smith' AS Name),
(SELECT '123ABC' AS ID, 'Joseph Smith' AS Name),
(SELECT '345XYZ' AS ID, 'Michael Johnson' AS Name),
(SELECT '345XYZ' AS ID, 'MikeJohnson' AS Name),
(SELECT '678LMN' AS ID, 'Suzyjones' AS Name),
(SELECT '678LMN' AS ID, 'Suzanne Mary Jones' AS Name),
(SELECT 'AAA' AS ID, 'Jordan Tigani' AS Name),
(SELECT 'AAA' AS ID, 'Felipe Hoffa' AS Name),
(SELECT 'BBB' AS ID, 'Mikhail Berlyant' AS Name),
(SELECT 'BBB' AS ID, 'Michael Sheldon' AS Name),
) AS two
ON one.ID = two.ID
HAVING Name1 < Name2
) ,
// input columns
ID, Name1, Name2,
// output schema
"[{name: 'ID', type:'string'},
{name: 'Name1', type:'string'},
{name: 'Name2', type:'string'},
{name: 'similarity', type:'float'}]
",
// function
"function(r, emit) {
var _extend = function(dst) {
var sources = Array.prototype.slice.call(arguments, 1);
for (var i=0; i<sources.length; ++i) {
var src = sources[i];
for (var p in src) {
if (src.hasOwnProperty(p)) dst[p] = src[p];
}
}
return dst;
};
var Levenshtein = {
/**
* Calculate levenshtein distance of the two strings.
*
* @param str1 String the first string.
* @param str2 String the second string.
* @return Integer the levenshtein distance (0 and above).
*/
get: function(str1, str2) {
// base cases
if (str1 === str2) return 0;
if (str1.length === 0) return str2.length;
if (str2.length === 0) return str1.length;
// two rows
var prevRow = new Array(str2.length + 1),
curCol, nextCol, i, j, tmp;
// initialise previous row
for (i=0; i<prevRow.length; ++i) {
prevRow[i] = i;
}
// calculate current row distance from previous row
for (i=0; i<str1.length; ++i) {
nextCol = i + 1;
for (j=0; j<str2.length; ++j) {
curCol = nextCol;
// substution
nextCol = prevRow[j] + ( (str1.charAt(i) === str2.charAt(j)) ? 0 : 1 );
// insertion
tmp = curCol + 1;
if (nextCol > tmp) {
nextCol = tmp;
}
// deletion
tmp = prevRow[j + 1] + 1;
if (nextCol > tmp) {
nextCol = tmp;
}
// copy current col value into previous (in preparation for next iteration)
prevRow[j] = curCol;
}
// copy last col value into previous (in preparation for next iteration)
prevRow[j] = nextCol;
}
return nextCol;
}
};
var the_Name1;
try {
the_Name1 = decodeURI(r.Name1).toLowerCase();
} catch (ex) {
the_Name1 = r.Name1.toLowerCase();
}
try {
the_Name2 = decodeURI(r.Name2).toLowerCase();
} catch (ex) {
the_Name2 = r.Name2.toLowerCase();
}
emit({ID: r.ID, Name1: the_Name1, Name2: the_Name2,
similarity: 1 - Levenshtein.get(the_Name1, the_Name2) / the_Name1.length});
}"
)
WHERE similarity > -1
ORDER BY similarity DESC
它产生以下结果
ID Name1 Name2 similarity
123ABC joe smith joseph smith 0.6666666666666667
345XYZ michael johnson mikejohnson 0.6666666666666667
678LMN suzanne mary jones suzyjones 0.5
BBB michael sheldon mikhail berlyant 0.4666666666666667
AAA felipe hoffa jordan tigani 0.0